
RADC-TR-89-337
Final Technical Report
January 1990

SOFTWARE TECHNIQUES FOR
NON-VON NEUMANN ARCHITECTURES

Computer Sciences Corporation

Chris Lightfoot, Doug Sakal, Tim Busse, Jerry Shelton

C)

09
•N .-.-]9

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

90 04 04 125

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Services (NTIS) At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-89-337 has been reviewed and is approved for publication.

S2411

APPROVED:

PAUL M. ENGELHART
Project Engineer

APPROVED: j

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

IGOR G. PLONISCH
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your
organization, please notify RADC (COEE) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

FOrn App~rovedREPORT DOCUMENTATION PAGE Oom 4- 1Ove 8

Is REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A Approved for public release;
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimited.
N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-89-337

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION
(If applicable)

Computer Sciences Corporation (if,_________ Rome Air Development Center (COEE)
6. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

3160A Fairview Park Drive South
Falls Church VA 22042 Griffiss AFB NY 13441-5700

Ba. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If appliable)

Rome Air Development Center COEE F30602-87-D-0092
SL ADDRESS (Cty State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK IWORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

Griffiss AFn NY 13441-5700 62702F 5581 QB 03
11. TITLE (hiciude Security Ciaification)

SOFTWARE TECHNIQUES FOR NON-VON NEUMANN ARCHITECTURES

12. PERSONAL AUTHOR(S) Chris Lighttoot, Doug SaKal, T1m Busse, Jerry Shelton - USU;

Ralph Duncan - Control Data Corporation; Tom Cheatham - Software Options, Inc.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yeav, Mbint Day) IS. PAGE COUNT

* Final IFROM Fb 88 TO jun 89 January 1990 222

16. SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES 18. SUBJECT TERMS (Contkle an rever If necsary and =; by block number)

FIELD GROUP SUB-GROUP

12 1 05 Parallel Processing Non-von Neumann Architectures
I I Software Engineering Command and Control

19. ABSTRACT (Contimue on rvere If necesay and Identify by block numbe)

-This report examines the use of non-sequential (Non-von Neumann) technology for the
support of command and control applications. It has become apparent that the utilization
of traditional von-Neumann computers is insufficient to handle the increasing complexity
of many applications. The utilization of Non-von Neumann Architectures is needed to
satisfy these computational requirements.

In order to assess the utility of Non-von Neumann Architectures, three tasks were per-
formed: 1) A comprehensive survey of existing Non-von Neumann Architectures and develop-
ment of a new taxonomy, classifying Non-von Neumann Architectures according to structure
and capability; 2) Based on the architecture survey and classification scheme, a deter-
mination of how these architectures are currently applied as well as their potential use
in C31 applications was made; 3) An assessment of how these Non-von Neumann based archi-
tectures can be utilized over the entire system and software life cycle. ('. -

20. DISTRIBUTION/AVAILABIUTY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION

CIUNCLASSIFIED/UNLIMITED C3 SAME AS RPT. 0 DTIC USERS Unclassified
22* NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Ale. Code) 22c. OFFICE SYMBOL
Paul M. Engelhart (315) 330-4476 RADC (COEE)

00 Form 1473. JUN 86 Przvioun o tid are obolee. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

4
r 0

'c7

K .. TABLE OF CONTENTS

EXECUTIVE SUMMARY ... ES-1

CHAPTER 1 - INTRODUCTION .. I-1
1.1 The NvN Architecture Classification Scheme (NvNACS) 1-1
1.2 Application of NvN Architectures to BM/C3I Applications I-1
1.2.1 B M /C 31 ... 1I1
1.2.2 Artificial Intelligence ... 1-2
1.2.3 Real-Time Simulation ...

1.2.4 Signal Processing .. 1-3
1.2.5 Image Processing .. 1-4
1.3 Software Engineering Assessment ... 1-4
1.3.1 Software Life Cycle Issues and NvN Architectures 1-4
1.3.2 Software Engineering Technology Issues ... 1-4
1.3.3 The Automation of Software Development for NvN Architectures 1-5

CHAPTER II - NON-VON NEUMANN ARCHITECTURE CLASSIFICATION
SCHEME .. II-1

2.1 Overview .. I- 1
2.1.1 The NvNACS and the Survey of NvN Architectures II-i
2.1.2 The Architecture Classification Scheme .. 11-2
2.1.2.1 The Classification Methodology ... 11-2
2.1.2.2 Nomenclature .. 11-3
2.1.2.3 The Top Level Architecture Classes .. 11-3
2.1.2.4 Rationale for the Classification System ... 11-4
2.1.3 Class One: Pipelined Vector Uniprocessor Architectures 11-6
2.1.3.1 Pipelined Vector Uniprocessor Architectures: Subclassifications 11-7
2.1.3.2 Examples of Pipelined Vector Uniprocessor Architectures 11-7
2.1.4 Class Two: Rhythmic Cellular Control Architectures 11-7
2.1.4.1 Rhythmic Cellular Control Architectures: Sut -'f ".,fications 11-8
2.1.4.2 Examples of Rhythmic Cellular Control Arc .tecrzirs 11-9
2.1.5 Class Three: Processor Array ArchitectL: 119
2.1.5.1 Processor Array Architectures: Subclassifications 11-10
2.1.5.2 Examples of Processor Array Architectures ... II-11
2.1.6 Class Four: Associative Processor Architectures 11-11
2.1.6.1 Associative Processor Architectures: Subclassifications 11-12
2.1.6.2 Examples of Associative Processor Architectures II-13
2.1.7 Class Five: Operand-Driven Architectures .. 11-13
2.1.7.1 Operand-Driven Architectures: Subclassifications 11-13
2.1.7.2 Examples of Operand-Driven Architectures .. 11-16
2.1.8 Class Six: General-Purpose, Multiple-PE Architectures 11-16
2.1.8.1 General-Purpose, Multiple-Processor Architectures: Subclassifications 11-17
2.1.8.2 Classifying General-Purpose, Multiple-Processors 11-20
2.1.9 Class Seven: Neural Network Architectures .. 11-20
2.1.9.1 Neural Network Architecture: Subclassification ... 11-22
2.1.9.2 Examples of Neural Network Architectures ... 11-22
2.1.10 Architecture Descriptions ... 11-23

CHAPTER HI -. ... 1I-1
3.1 Introduction .. HI- 1
3.1.1 BM/C31 ... 1-1
3.1.2 Artificial Intelligence ... 111-2
3.1.3 Real-time Simulation ... 111-2
3.1.4 Signal Processing .. 111-3
3.1.5 Image Processing .. 111-4
3.1.6 General Purpose Use of NvN Machines .. 111-5
3.2 Battle Management/C31 Applications .. 111-5
3.2.1 Generic Definition of BM/C31 .. 111-5
3.2.2 BM/C31 Problems .. 111-6
3.2.3 Use of NvN Architectures in BM/C3I Applications 111-10
3.2.3.1 An Object-Oriented Perspective of BM/C31 Systems In-10
3.2.4 Projected Future Use of NvN Architectures in BM/C31 Applications HI-18
3.2.4.1 Large Database Data Processing .. 111-18
3.2.4.2 Data Processing .. 111-18
3.2.4.3 Real-Time Data Processing ... 111-19
3.2.4.4 High-Speed, Large-Scale Computation ... 111-19
3.2.4.5 Network Access .. 111-19
3.2.4.6 Network Management and Control .. 111-19
3.2.4.7 Network Security Control ... 111-19
3.2.4.8 Image Processing .. 111-19
3.2.4.9 Signal Processing .. 111-19
3.2.4.10 Pattern Recognition .. 111-20
3.2.4.11 Text and Image Processing ... 111-20
3.2.4.12 Graphical Data Compression and Decompression 11-20
3.2.4.13 Large Graphical Database Management ... 111-20
3.2.4.14 Large-Scale Graphics Generation and Display ... 1I-20
3.2.4.15 Expert Systems ... 111-20
3.2.4.16 Message Processing ... 111-21
3.2.5 The SDS Battle Management/Fire Control Functions for Space Based Processing 111-21
3.2.6 What BM/C31 Systems Will Look Like in the 1990s HI-24
3.3 Artificial Intelligence ... 111-24
3.3.1 Introduction ... 111-24
3.3.1.1 Overview of Artificial Intelligence Production Systems 111-24
3.3.1.2 Production System Architecture Research .. 111-25
3.3.2 Production System Applications Characterization 111-30
3.3.2.1 Fundamental Processes .. 111-30
3.3.2.2 Key Algorithm Types .. 11-31
3.3.2.3 Performance Requirements ... 111-32
3 3.2.4 Hardware Architecture Demands 111-33
3.3.3 NvN Architecture Suitability for Al Production Systems 111-34
3.3.3.1 Pipelined Vector Uniprocessor Architectures (Class I) 111-34
3.3.3.2 Rhythmic Cellular Control Architectures (Class 11) 111-34
3.3.3.3 Processor Arrays (Class III) .. 111-35
3.3.3.4 Associative Processor Architectures (Class IV) .. 111-35
3.3.3.5 Operand-Driven Architectures (Class V) ... 1I-36
3.3.3.6 General-Purpose Multiple-PE Architectures (Class VI) 111-36
3.3.3.7 Neural Network Architectures (Class VII) .. 1II-38
3.3.4 Ranking NvN Architecture Classes on Their Suitability for Artificial Intelligence

Production Systems .. 111-38
3.3.4.1 Al Production System Review ... 111-38
3.3.4.2 Identifying Suitable NvN Architecture Classes ... I-38

ii

3.3.4.3 NvN Architecture Classification Rankings .. 111-40
3.3.5 C onclusions ... 111-41
3.4 Real-Time Simulation .. 111-42
3.4.1 Introduction ... 111-42
3.4.1.1 Simulation Executives ... 111-43
3.4.1.2 Simulation Repeatability in Multiprocessor Architectures 111-44
3.4.2 The Air Defense Model Environment .. 111-46
3.4.2.1 Model Descriptions .. 11-47
3.4.3 Processing Parametrics .. 111-55
3.4.4 Load Analysis .. 111-55
3.4.5 Database Approach ... 1I-59
3.4.5.1 Relational Database .. 1I-59
3.4.5.2 Object Storage Sizing .. 1I-60
3.4.5.3 Model Parameter Storage Sizing ... m -61
3.4.5.4 Post-Test Data Storage .. 111-62
3.4.5.5 Scenario File Storage Sizing .. 111-63
3.4.5.6 Data Extraction Storage Sizing ... 111-63
3.4.6 Parallelization of Simulation Functions .. I-63
3.4.7 Candidate Host Computer Configurations .. 111-64
3.4.7.1 Class I: Pipelined Vectorized Uniprocessor 1.... .- 64
3.4.7.2 Class VI: General Purpose, Multiple-PEs/Shared Memory 111-64
3.4.7.3 Class VI: Genera. Purpose, Multiple-PEs/Message Passing 111-65
3.5 Signal Processing Applications of NvN Architectures 111-65
3.5.1 Signal Processing Generic Definition .. 111-65
3.5.2 Signal Processing Problems .. 111-66
3.5.3 Use of NvN Architectures in Signal Processing 111-67
3.5.4 Future Use of NvN Architectures in Signal Processing 111-68
3.5.5 Matching NvN Architecture Classes and Signal Processing Problems 111-68
3.5.5.1 Pipelined Vector Uniprocessors .. 111-68
3.5.5.2 Rhythmic Cellular .. 111-68
3.5.5.3 Processor Array .. 111-68
3.5.5.4 Associative Processor .. 111-69
3.5.5.5 Operand Driven ... 111-69
3.5.5.6 GP Multiple PE ... 111-69
3.5.5.7 Neural Network .. 111-69
3.5.6 Signal Processing Applications vs. Hardware .. 111-69
3.6 Image Processing .. 11-72
3.6.1 Bulk Image Processing .. 111-73
3.6.2 Potential Future Uses of NvN Architectures .. 111-76
3.6.3 Matching Architectures .. 111-77
3.7 General Purpose Use of NvN Machines .. 111-79
3.7.1 Use in Development, Prototyping, and Testing of Hardware and Software 111-79
3.7.2 Problem Domains to which NvN Architectures are Applicable 11-80

CHAPTER IV - SOFTWARE ENGINEERING FOR NVN ARCHITECTURES. IV-1
4.1 Software Engineering Assessment IV-1
4.1.1 Life Cycle and NvN Architectures ... IV-3
4.2 Software Engineering Technology Issues ... IV-6
4.2.1 Software Engineering Tools for NvN Architectures IV-6
4.2.1.1 Operating Systems for NvN Architectures .. IV-6
4.2.1.2 Code Optimization for NvN Architectures .. IV-8
4.2.1.3 Programming Languages for NvN Architectures IV-10
4.2.1.4 Debuggers for NvN Architectures .. IV-14
4.2.1.5 Performance Monitors for NvN Architectures .. IV-15

iii

4.2.1.6 Programming Models for NvN Architectures .. IV- 15
4.2.1.7 Simulators for NvN Architectures ... IV-23
4.2.1.8 Software Tool Sets for NvN Architectures ... IV-24
4.2.2 Analysis of Software Tools for NvN Architecture Classes IV-27
4.2.2.1 Software Tools for NvNACS Class I: Pipelined Vector Uniprocessors IV-28
4.2.2.2 Software Tools for NvNACS Class II: Rhythmic Cellular Control IV-29
4.2.2.3 Software Tools for NvNACS Class III: Processor Arrays IV-30
4.2.2.4 Software Tools for NvNACS Class IV: Associative Memory Processors IV-31
4.2.2.5 Software Tools for NvNACS Class V: Operand-Driven IV-31
4.2.2.6 Software Tools for NvNACS Class VI: General-Purpose, Multiple-PE IV-32
4.2.2.7 Software Tools for NvNACS Class VII: Neural Networks IV-34
4.2.3 Analysis of Existing Software Tools for Supporting a Life Cycle on NvN

A rchitecture ... IV -35
4.3 The Automation of Software Development for NvN Architectures IV-36

CHAPTER V - CONCLUSIONS .. V-1
5.1 Conclusions about the Current State-of-the-Art .. V-1
5.2 Recommendations for Advancing the State-of-the-Art V-1

APPENDICES

A Architecture Assessment Sketches .. A- 1
B Surveyed Performance Data ... B-1
C Architecture to Technical Literature Map ... C-1

BIBLIOGRAPHY .. BIB-1

LIST OF ILLUSTRATIONS
Figure
ES-1 The Top-Level Classes of NvN Architectures ... ES-2
ES-2 BM/C31 Systems in the 1990s ... ES-3
2-1 The Top-Level Classes of NvN Architecture Classification Scheme 11-3
2-2 Pipelined Vector Uniprocessor Class ... 11-6
2-3 Rhythmic Cellular Control Architectures 11-8
2-4 Processor Array Architectures ... II-10
2-5 Associative Processor Architectures .. 11-12
2-6 Operand-Driven Architectures ... 11-14
2-7 General-Purpose, Multiple-PE Architectures .. 11-17
3-1 The Primary Management Objects of a BM/C3I System 11I-10
3-2 The Primary BM/C31 Management Objects and Their Functionality 111-12
3-3 Projection of Single-Band and Full-Scene Data Processing Requirements for

the Future (LANDSAT) ... 111-75

iv

LIST OF TABLES

Table
ES- 1 Support Tools Available for the Software Life Cycle ES-5
2-1 Examples of Pipelined Vector Uniprocessors .. 11-7
2-2 Examples of Rhythmic Cellular Control Architectures 11-9
2-3 Examples of Processor Array Architectures .. 11-11
2-4 Examples of Associative Processor Architectures ... 11-13
2-5 Examples of Operand-Driven Architectures .. 11-16
2-6 Examples of General-Purpose, Multiple P-E Architectures 11-21
2-7 Neural Network Learning Algorithms .. 11-22
2-8 Examples of Neural Network Architectures .. 11-22
3-1 Matching Military Tasks to Computational Tasks .. 111-7
3-2 Classes of Software to Support Military Tasks ... 111-8
3-3 Parameters Used in BM/C31 System Sizing .. 111-22
3-4 Estimates of the Number of Computations per Function 111-22
3-5 Database Size Estimates and Usage Identification .. 111-23
3-6 NvNACS Classes in Recent PS Performance Research 111-39
3-7 Performance Metrics for NvN Architectures .. 111-40
3-8 Ranking NvNACS Categories for Parallel PS Suitability 111-40
3-9 Initial TEF Load Analysis ... 111-57
3-10 TEF Load Analysis Without Redundant SOCC Processing 111-58
3-11 Signal Processing Applications vs. Hardware Systems 111-70
3-12 Multispectral Linear Array Potential Sensors ... 111-75
3-13 Multispectral Linear Array Potential Sensors' Performance 111-76
3-14 Evaluation of NvN Systems for Image Processing 111-78
4-1 Matching Machine Operating Systems to Literature Citations IV-7
4-2 Available Optimizing Compilers .. IV-8
4-3 Matching Restructuring Tools to Literature Citations IV-9
4-4 Matching HOLs and Literature Citations .. IV-10
4-5 Debuggers for NvN Architectures .. IV-14
4-6 Performance Monitors for NvN Architectures ... IV-15
4-7 Programming Models for Parallel Computing .. IV-16
4-8 An Example of a Paralation ... IV-21
4-9 Matching Simulators to Literature Citations ... IV-23
4-10 Matching Tool Sets to Literature Citations .. IV-24
4-11 NvN Architectures and Identified Software Tools PV-27
4-12 Examples of Tools for Pipelined Vector Uniprocessors IV-28
4-13 Examples of Tools for Class II Machines ... IV-29
4-14 Examples of Tools for Processor Arrays .. IV-30
4-15 Examples of Tools for Associative Memory Processors IV-31
4-16 Examples of Tools for Operand Driven .. IV-32
4-17 Examples of Tools for GPMPE .. IV-32
4-18 Examples of Tools for Neural Networks .. IV-34
4-19 Tools Available for Each Phase of the Life Cycle .. IV-36

.....

EXECUTIVE SUMMARY

Overview

This report examines the use of Non-von Neumann (NvN) technology for the support of command
and control applications. With the introduction of increasingly sophisticated sensors, data input to
the command and control function is rapidly becoming too great for standard von Neumann
computers to process. Applications such as signal processing, threat assessment and weapon
selection and control all need greater processing power to keep up with the modem data acquisition
capabilities.

In order to assess the utility of NvN technology, the report defines a taxonomy of seven classes of
architectures, the applications for which they are appropriate and the tools available for constructing
software. The goal is to provide an indication of what is reasonable to expect from such architectures
today and what is required to make the architectures more useful in the future. The taxonomy
provides a hierarchical classification structure and emphasizes differences between architectures
that otherwise share common high level features. This allows highlighting of features that may
determine suitability for particular applications.

The utility of the NvN architectures is considered in the context of Battle Management/Command,
Control, Communications and Intelligence (BM/C31I) applications. Existing, operational BM/C3I
systems, based on the traditional von Neumann architecture are hard-pressed to cope with the
explosion of information that is required by command authorities to successfully manage modem
weapons on battlefields of global or near global scope. Life cycle support agencies are responsible
for providing computer-based BM/CI systems to the nation's combat units. Their challenge in the
1990's will be to apply the products of on-going NvN research and development to existing and near-
term planned BM/C3I systems.

The existence of an application on a computer system can be attributed to one of two reasons: 1) the
architecture was specifically designed to solve problems in that applications' domain or 2) the
hardware was avauaie so the application wab poried to it. In either case, the efficiency of the
application is also dependent on the mapping of the algorithm to the architecture and the construction
of the software. As a result, one of the most important areas for immediate consideration is the
development of tools and environments for the efficient construction of the software for these high
powered machines.

The report considers software tools and environments in the contet ef software development
requirements across the spectrum of NvN architectures. Specific tools, such as vectorizing
FORTRAN compilers are typically made available by machine manufacturers as part of the
commercial hardware package. In addition, several tools are available through research institutions,
such as performance monitors, debuggers, and simulators.

Over and above the need for tools is the need for total life cycle environments based on techniques
appropriate for NvN architectures. Once a machine type has been tentatively selected, the entire
development cycle including modeling, prototyping, production development and maintenance
requires support, if a quality product is to be delivered to the field. While a generic development
environment, suitable to multiple architectures should certainly be considered, it is unlikely, with the
extreme differences in architecture being proposed, that "one size fits all". Either the effort and
expense of providing suitable, different development environments must be considered or the
availability of a development environment for a particular architecture may drive machine selection,
rather than the performance capabilities of the architecture.

ES- I

Taxonomy of NvN Architectures

In order to address the topics of this report consistently, it is important to have a classification scheme
which appropriately identifies the various NvN architectures discussed by the report. The growing
number of architectural types makes such a classification scheme imperative.

The first part of this report defines a practical taxonomy which is a description of such a classification
scheme. The basis of the taxonomy is to provide a hierarchical classification scheme with detailed
subcategories. Within each subcategory the individual features of the architectural type are
highlighted. This highlighting emphasizes differences among existing or planned architectures that
may share many common high level features. The hierarchical structure allows the taxonomy to be
easily expanded as new architectures are introduced.

The taxonomy provided in the report follows the categories shown in Figure ES- 1. A description of
each of the major architectural classes is provided, accompanied by a definition of major subclasses
and subcategories, each with its defining attributes. Example survey data for the various subcate-
gories is presented to ensure the reader's understanding of the features of the machines considered
to be in each class.

Pipelined Rhythmic
Vector Cellular

Uniprocessor Control

-7 Non-von Neumann

Processor Architecture Associative 1
Array CProcessor IilL ClassesI -

F Operand Neural l-Mpe
I Driven Networks Multiple

_________PEp

Figure ES-1. The Top-Levol Classes of NvN Architectures

The taxonomy can be used to classify new architectures; it can be used as a basis for assessing the
strengths and weaknesses of the various architectures with respect to particular problems. Finally,
the taxonomy can be used to categorize the environmental support required for proposed machines
in order to perform system development in an efficient way.

The taxonomy can be extended by adding new classes in the event of a major architectural
breakthrough or by the addition of subclasses and detailed breakouts within subclasses when
attributes are provided which do not change the primary operational concept of the machine in
question. Maintenance of the taxonomy will provide a current view of the state of NvN machines
and the differing capabilities available in the marketplace.

ES-2

Application Considerations

The challenge to the life cycle support agencies which are responsible for providing computer-based
BM/C3 I systems to combat units is how to apply the results of on-going research and development
of the new NvN machine architectures to existing and near-term planned BM/C 31 systems. If there
is a single message arising from the many research and development projects investigating the NvN
machines, it is that the systems of the 1990's are going to be combination of NvN and traditional
machines.

As a basis for analyzing applications and evaluating NvN architectures for use in various problem
domains, CSC gathered information application areas where NvN architectures are being used,
analyzed the data and extrapolated it to use in future applications. An emphasis was placed on BM/
C31 and the current relationship between NvN architectures and BM/C3I problem domains.

Computers that embody NvN architectures potentially offer the computational power reqired to run
many applications in the BMC 3I problem domains. A summary of the domains considered, potential
NvN applications and currently unresolved issues is shown in Figure ES-2.

SURVEILLANCE
Signal Processing

INTELLIGENCE OBSERVED OBJECTS &
Image Processing THREAT EVALUATION
Data Processing Real-Time Processing

STATUS OF FRCES
Data Processing
Large Database Processing

Figure ES-2. BM/C31 Systems in the 1990s.

Additionally, a principle factor in determining applications performance is the algorithm selected for
solving components of the problem. An inappropriate algorithm impedes the potential of a computer
more than any other factor in determining performance. The capability of a developer to select!
design an algorithm for an available architecture or select an architecture suitable for an available
algorithm determines the final performance characteristics of the combined system.

ES-3

Outstanding Issues

Performance levels required for real-time processing are constantly increasing with a need to process
and fuse greater amounts of data. The enhanced performance capabilities of the NvN architectures
are a natural solution to the data processing requirement.

Size and scope of databases are constantly increasing. A natural approach in this area is the
application of the various associative memory machines which are becoming available. Other
network-oriented, data base mechanisms also upgrade future database processing.

Imbedding and utilizing human knowledge is becoming an understood technique. However this too
requires access to considerable computing power in order to provide decision support capability in
real-time. NvN architectures are already being heavily used for pattern recognition. It can be
assumed that they will contribute heavily in the development of expert decision support systems in
the near future.

Software Engineering Assessment

As the influence of software has become predominant in the information system industry, it has been
recognized that the basis of sound software development is an adequate set of support tools. For
traditional von Neumann computers, tools are needed to support each phase of the development life-
cycle from the original requirements analysis through deployment and maintenance in the field. An
integrated set of such tools, appropriate across the entire life-cycle, constitute a software develop-
ment environment.

For the different classes of NvN machines, a software development environment can be defined. The
components of the life-cycle remain constant independent of a particular methodology whether they
are performed in a straight line (water fall) fashion, continually iterated (spiral) or performed in a high
level, informal way followed by a more formal production cycle (prototyping). At some stage of
these or any other life-cycles being considered, requirements analysis must be performed, design
must be performed, code must be implemented and after integration and deployment the code must
be maintained.

Although the performance characteristics of the NvN machines provide the systems designer with
an important tool for enhancing systems capabilities, the complexity of the NvN architectures
introduce increased complexity into the software development process. This increases the necessity
for a set of support tools which can operate through the entire life-cycle, aiding the system designer
in selecting the architecture to be used and also aiding the software developers during the
development and maintenance. Unfortunately, outside of the specific implementation portion of the
life-cycle, few support tools are available. The situation is summarized in Table ES-l.

The conclusion of this study is that the entire area of support environments for NvN architectures
needs considerable work to support the use of these architectures for operational systems. The tools
which are developed need to be system oriented, rather than specifically developed by machine
manufacturers to support their particular architecture. An important consideration at each end of the
development process is the capability to rehost applications from one architecture to another for both
testing and greater operational efficiency.

ES-4

Table ES-1. Support tools available for the software life cycle.

LIFE CYCLE PHASES __ ..

'Cie

T Operating Systems X X

0 Optimizing Compilers X

0 Programming Languages X

L Debuggers X

Performance Monitors X X
Programming Models X X X

[Hardware Simulators X X X

ES-5

CHAPTER I. INTRODUCTION

1.1 THE NvN ARCHITECTURE CLASSIFICATION SCHEME (NvNACS)

The NvNACS is based on the following principles:

" the classification scheme is hierarchical

* high-level categories reflect aggregate architectural features wherever possible

* the scheme builds upon several earlier taxonomies

" the categories included reflect existing or definitely planned architectures.

The four tiers of the classification hierarchy in descending sequence are (1) Class, (2) Subclass,
(3) Order, and (4) Family.

The NvNACS provides for seven instances of the Class category:

Class I Pipelined Vector Uniprocessor
Class HI Rhythmic Cellular Control
Class III Processor Array
Class IV Associative Processor
Class V Operand-Driven Processor
Class VI General Purpose, Multiple-Processing Elements
Class VII Neural Network Processor

1.2 APPLICATION OF NvN ARCHITECTURES TO BM/C 3I APPLICATIONS

1.2.1 BM/C 31

Battle Management, Command, Control, Communications, and Intelligence (BM/C31) Systems are
being analyzed as a first step in transitioning them onto the next generation of hardware
architectures. Existing, operational BM/C 31 systems, based on the traditional von Neumann
(TvN) machine architecture, are hard pressed to cope with the explosion of information that is
required by command authorities in order to successfully manage modem missile-type weapons on
battlefields of global or near-global scope.

The challenge to the Life Cycle Support Agencies which are responsible for providing computer-
based BM/C 31 systems to the combat units is to determine how to apply the fruits of on-going
research and development of the new Non-von Neumann machine architectures to existing and
near-term planned BM/C 31 systems. If there is a single message arising from the many research
and development projects investigating the NvN machines, it is that the BM/C3I systems of the
1990s are going to be networks of hardware and software of perhaps all seven of the NvN
architectures, operating in conjunction with machines of the traditional von Neumann type.

I- 1

1.2.2 Artificial Intelligence

The technology of artificial intelligence and particularly production systems will become increasing
important to BM/C3 1 systems. Production systems will form the backbone of many different
expert advisors that will be inserted into new or re-implemented Command and Control
applications over the next decade. The nature of modem battle necessitates various expert advisors
to support commanders and their staffs in efficiently managing the military resources for which
they are responsible. Section 3.2 discusses the potential for implementing production systems on
NvN machines. A production system is a rule-based program that iteratively evaluates sets of
conditional rules and acts on the results of the evaluation. Production systems are comprised of
working memory, a set of rules, and a program that evaluates the rules based on the current state of
working memory. Expert systems are production systems that contain rules derived from human
experts. Computerized expert advisors in BM/C 3 1 systems will contain rules that encapsulate the
domain expertise of commanders and their staffs, as well as various classes of technologists.

The fundamental processes that comprise all production systems are initialization, condition
evaluation, rule selection, conflict resolution and rule firing. The critical processes that determine
performance on von Neumann computers are condition evaluation and rule firing. Memory access
and complex comparison instructions limit the performance on conventional systems. For some
large real-time applications, data acquisition requires fast data input capability and data
preprocessing prior to information being stored in working memory. Response time is critical in
real-time applications and inferences must be made in a short time frame.

Memory subsystem speed is likely to be the critical factor in determining the performance of a
production system, because matching production preconditions to the current working memory
contents consumes the vast majority of compute time. This implies that a NvN architecture is
needed that balances memory access and conditional evaluation. This aspect has encouraged
approaches using both associative memory processors and subtrees of low-capacity processors
with private memory. Present research suggests that several NvN architecture types can be
efficiently exploited for parallel production system execution.

1.2.3 Real-Time Simulation

Real-time simulation enables commanders and their staffs to play "what-if' games in applying
various configurations of military resources to different battle scenarios. The real-time simulation
reported here is an in-depth look at a specific Air Defense Initiative (ADI) problem. The ADI
Technical Evaluation Facility (TEF) models the North American Air Defense environment and
provides for interaction between simulated real-world objects and the simulated effects. The
characteristics of this complex model are found in most real-time simulations.

The ADI TEF simulation is comprised of several separate models that are controlled by and
communicate through a simulator executive. The TEF executive is a hybrid that combines event-
stepped simulation with time-stepped simulation, thereby providing a centrally controlled discrete
event simulation with an underlying selectable time period.

The simulator executive is the key to a successful simulation and, therefore, should be carefully
designed with particular attention given to simulation efficiency and repeatability. For this
simulation 10 to 18 minutes is acceptable turnaround time for simulating 11 one-hour time
intervals. Examination of the most compute-intensive model revealed processing requirements in
excess of 67 MIPS on a von Neumann computer. Moreover, the computer system needed access to

1-2

over 33 MBytes of real memory, and over 2 GBytes of on-line data storage. This large amount of
data access and data movement is characteristic of most simulation applications.

Each of the individual models for object motion, sensor detection, or environmental calculations
are possible candidates for parallel processing. The calculations performed are identical for all
objects of the same category, and simultaneous evaluation offers the potential for greatly increased
efficiency. For the simulation executive, feasible parallel execution might be the distribution of
functions, provided the simulation is repeatable (i.e., executing the simulation with the same input
parameters and data result in identical output data). A coarse-grain parallel architecture provides
the best choice for the execution, with each large processor having the ability to execute fine-
grained parallel calculations, such as vector or array processing.

1.2.4 Signal Processing

Signal processing is the application of algorithms to sampled data from single or multiple sensors
for the purpose of extracting intelligence from the data and/or improving the quality of intelligence
that may be extracted. Signal processing techniques are applied to many types of signals including:
telecommunication, radar, video images, acoustic, seismic, and medical instrumentation.

The processing algorithms are applied for a variety of purposes, such as: improvement of signal-
to-noise ratio, speech recognition/speech compression, detection of events, pattern recognition,
parameter measurement, and image processing.

The most pervasive problem of signal processing is its computational intensity. In some cases
relatively high I/O bandwidths are also required, but computational bandwidth is the predominant
problem.

The problem of high data rates from a large number of sensors is aggravated by the additional
requirement for high precision computation when using the more sophisticated processing
algorithms. Advances in signal processing over the past three decades have brought increasing
complexity of the algorithms, ranging from filtering to spectral analysis to adaptive beamforming.
These changes in algorithmic complexity have altered the computational load from a factor of N to
a factor of N2 to a factor of N3 (where N is the number of data samples to be processed in a given
time period). In most signal processing applications, the processing load must be handled in "real-
time."

A common and significant attribute of most signal processing applications is the use of complex
mathematical techniques such as FFT (fast Fourier transform), IIR (infinite impulse response)
filtering, FIR (finite impulse response) filtering, and matrix operations. This algorithmic
commonality makes it feasible in many instances to select or to design a system architecture that is
suitable for multiple signal processing applications.

NvN architectures are already in use in most of the signal processing applications where
computational bandwidth requirements indicate the need, and where cost allows. Numerous
pipelined array processors (not to be confused with processor arrays) of the class I type have been
commercially available as peripherals to main-frame computers, and have been applied to many
signal processing applications since the early 1970s.

Adaptive beamforming in radar, sonar, and seismic applications has been performed using
rhythmic cellular architectures as well as processor array type architectures. Target tracking

1-3

applications have also been performed on associative processor architectures. Processor arrays
have also been applied to speech and image processing. Various multiple processing element (PE)
architectures have been applied to general signal processing, including the application of expert
systems technology to signal analysis.

1.2.5 Image Processing

Image processing has been defined in terms of two categories of processing by S.Y. Kung in his
book entitled "VLSI Array Processors", Prentice Hall, Englewood Cliffs, N.J., (1988) pp.538.
The research activities dealing with images are divided into two disciplines: image processing and
image analysis. Image processing consists of enhancement, restoration, reconstruction and coding,
etc. Image analysis, on the other hand deals with extraction of lines, curves, and regions in
images, classification of objects, texture analysis, analysis of moving objects, and scene analysis.
Most image processing tasks are very time consuming. For example, low level operations, such as
filtering or enhancement, typically require the order of some tens of machine instructions per pihel.
A typical image obtained from a LANDSAT earth resources satellite is about 1000 x 1000
pixels/image. This implies a computation requirement of some tens of millions of instructions per
image, not including the computation for any substantive higher level processing. If such simple
low level operations are to be performed at a video rate, say 25 to 30 frames per second this means
a throughput requirement of about a billion instructions per second. In general, most real-time
image processing throughput rates outstrip current parallel architectures. Thus image applications
processing have long been (and will continue to be) a major driving force in the development of
faster and more powerful parallel machines.

1.3 SOFTWARE ENGINEERING ASSESSMENT

1.3.1. Software Life Cycle Issues and NvN Architectures

The complexities of NvN machines and the architectural complexity of the information processing
machine clusters that will characterize future BM/C31 systems is such that the traditional waterfall
life-cycle model and its specify-before-building paradigm is an inappropriate development template
for developing BM/C 31 applications.

The System/Software Engineering Environment (S/SEE) will be the primary instrument for
supporting all life-cycle activities, from concept modeling to test and evaluation of implemented
machine code. In addition the S/SEE will be used by the responsible Life-Cycle Support Agent in
the development of evolutionary upgrades to all deployed BM/C 3I systems.

1.3.2. Software Engineering Technology Issues

Information about the software tools that have been or are being developed, was gathered through
technical literature surveys, discussions with vendors, and discussions with users, particularly
users in academic research laboratories. The gathered information shows that many tools exist,
and that there is much variation in their usefulness.

The basic software development tool for most NvN machines is an operating system (usually
UNIX or a variant of UNIX), a FORTRAN compiler, and a loader/linker as well as a run-time
support environment. Often, the FORTRAN compilers accept certain extensions to the language
that simplify the creation of code segments that can be executed in parallel.

1-4

The surveyed tools and tool sets are also discussed in the context of the NvNACS, giving for each
architecture class an analysis of existing tools followed by an analysis of tools that are needed for
proper utilization of a particular machine class.

1.3.3. The Automation of Software Development for NvN Architectures

As the software tools become mature, they can be incorporated into a programming environment to
automate components of the life cycle phases. Initial programming environments for NvN
architectures are beginning to be explored, additional research is needed in the non-implementation
phases of the life cycle.

1-5

CHAPTER II: NON-VON NEUMANN ARCHITECTURE CLASSIFICATION

SCHEME

2.1 OVERVIEW

This section discusses the results of the Non-von Neumann Architecture Survey which constituted
Subtask I of the Software Techniques for Non-von Neumann Architectures Task.

Subtask 1 included both a survey of current state-of-the-art NonVon Neumann (NvN) architectures
and the development of a classification system, or taxonomy, for such architectures.

Section 2.1.2 presents the NvN architecture classification scheme. The presentation of that section
is:

Section 2.1.2.1: the classification methodology,
Section 2.1.2.2: the nomenclature of the scheme,
Section 2.1.2.3: top-level classes of NvN architectures,
Section 2.1.2.4: the rationale for the classification scheme.

The Section 2.1.2.4 rationale discussion is divided into:

(I) a discussion of aggregate characteristics,
(2) a definition of a hierarchical classification structure,
(3) the identification of departures from the earlier Hayne's taxonomy,
(4) a discussion of antecedent taxonomies.

Sections 2.1.3 through 2.1.9 discuss the seven instances of the CLASS category. Section 2.1.10
presents details of architectures.

Appendix A contains architecture assessment sketches. Appendix B encapsulates performance data
on various instances of NvN architectures. Appendix C is a reorientation of the bibliography to show
a mapping of architectures to literature citations.

2.1.1 The NvNACS and the Survey of NvN Architectures

The NvN Architecture Survey was undertaken to provide a sound basis for constructing a Non-von
Neumann Architecture Classification System (NvNACS). The NvNACS is designed to be a
practical classification system, or taxonomy, that can be used to identify computer architectures that
are best suited for particular military applications.

The NvNACS differs from the many computer architecture taxonomies proposed by university
researchers because their goals for their taxonomies are different from the goals set for this project.

II

For example, academic classification schemes are sometimes shaped by being developed:

" in conjunction with a formal descriptive notation for computer architectures (e.g.,
[Hockney and Jesshope 1981])

* to facilitate architecture comparisons, which use a generic architecture to represent an
entire group of quite varied machines (e.g., [Flynn 1972]).

The goal for the NvNACS is to help correlate specific military applications to suitable computer
architectures. This necessitates a taxonomy that:

• provides a hierarchical classification structure with detailed subcategories

" emphasizes differences between existing or planned architectures that otherwise share
common high-level features.

The NvNACS emphasis on detailed lower-level categories and an informal nomenclature is meant
to highlight individual architectural features that may determine suitability for particular applica-
tions and to make the system easy for personnel with varied technical backgrounds to use.

2.1.2 The Architecture Classification Scheme

2.1.2.1 The Classification Methodology

The methodology for developing the NvNACS is based on the following principles:

• high-level categories reflect aggregate architectural features whenever possible, in order
to increase comprehensibility-this follows the general approach used by Haynes.

* the classification system is hierarchical in order to maintain a systematic character and
to facilitate precision in mapping algorithms and application domains to architectural
categories.

• the classification scheme builds on previously published taxonomies and subtaxonomies
for particular types of architectures (e.g., associative processors, data flow architectures).

* the categories reflect existing or planned architectures, rather than every theoretically
conceivable permutation of features, although the scheme readily accommodates future
extensions.

11-2

2.1.2.2 Nomenclature

The four tiers in the hierarchy of the NvN Architecture Classification System are:

• Class: first-(highest)level category
* Subclass: second-level category
• Order: third-level category
* Family: fourth-level category

If the classification system needs to be refined further, additional lower-level categories can be
named, starting at the subfamily level.

2.1.2.3 The Top-Level Architecture Classes

The NvNACS provides for seven instances of the Class category:

1. Class One: Pipelined Vector Uniprocessor
2. Class Two: Rhythmic Cellular Control
3. Class Three: Processor Array
4. Class Four: Associative Processor
5. Class Five: Operand-Driven
6. Class Six: General-Purpose, Multiple-PE
7. Class Seven: Neural Network.

Figure 2-1 shows the top-level classes of the NvNACS.

Vector Cellular
Uniprocessor Control

Non-von Neumann

Processor Architecture Associative
Array ProcessorClassesI I

Operand Neuralupe

Driven Networks ultple

Figure 2-1. The Top-Level Classes of NvN Architecture Classification System

11-3

2.1.2.4 Rationale for the Classification System

I. Aggregate Characteristics-Higher-level categories of the NvNACS reflect aggregated
architectural characteristics, or features, whenever possible, rather than the presence or
absence of a single feature. This approach emphasizes what is distinctive about the
overall architecture and the kinds of computational problems it is meant to address. For
example, associative memory processors may reasonably be categorized as a type of
processor array [Hockney and Jesshope 1981]. However, since associative memory is not
an isolated feature of such architectures but rather the central feature which influences the
rest of the machine design, the NvNACS provides a separate class for associative proc-
essors.

Constructing categories on the basis of aggregate features that reflect the overall design
or a fundamental set of architectural features that naturally go together helps the user to
quickly undci stand high-level classes.

2. Hierarchical Classification Structure-The NvNACS uses a hierarchical classification
structure in order to provide an orderly, systematic method for distinguishing architec-
tures that otherwise share important structural or organizational characteristics. Subdi-
viding a class of similar architectures facilitates accurate assessments of architecture
suitability for particular algorithms and applications. For example, architectures that
share a macroscopic characteristic such as data flow organization may exhibit radically
different performance characteristics for a given class of algorithms, due to differences
in lower-level implementation characteristics (e.g., expression tree organization vs.
packet communications). A hierarchical classification scheme helps expose and organ-
ize important architectural differences.

A hierarchical system, at every classification level, could include categorizations for
every possible combination of features. However, this would lead to the creation of many
empty categories (those associated with no existing architectures); therefore, this
approach has been avoided. Instead, the features of surveyed architectures have been
used to produce categories for the combinations of architectural features actually
observed in existing or planned machines. Additional NvNACS categories can be added,
of course, to reflect future architectural developments.

3. Departures from Haynes Taxonomy-Haynes (1982) originally proposed the following
high-level classes of NvN architectures:

a. Multiple Special-Purpose Functional Units (systolic)
b. Associative Processors
c. Array Processors
d. Data Flow Processors
e. Functional Programming Language Processors
f. Multiple CPUs.

11-4

Although the NvNACS follows Haynes' approach at the highest level, in that it bases
classes on aggregate features, it departs from Haynes' categories in various ways, such
as:

a. Multiple Special-Purpose Functional Units has been renamed Rhythmic Cellular
Contol to more clearly expose the basic organizational principle of these architectures.
In addition, the class has been broadened to include wavefront as well as systolic
architectures.

b. Following Hockney and Jesshope (1982), A Processors has been renamed
Processor Aay to distinguish these architectures from commercial products with a
single CPU and pipelined functional units, which have been termed array processors.

c. Data EI Processors and Funcional Prgrammin Lang uag Processors have been
combined into a single class termed Qperand-Driven Architectures.

d. Multip CPUs has been renamed as General-Purse. M to: (1) make it clear
that a broad variety of processing elements can be used in such architectures and (2) to
distinguish general purpose architectures from application-specific ones (such as fixed
systolic architectures).

e. A Pipelined Vector Uniprocessor class has bcen added in order to clarify distinctions
between this kind of architecture and others, such as MIMD architectures and multi-head
vector machines (e.g., ETA-10, Cray X/MP-4).

f. A Neural Network class has been added to reflect recent research activities.

4. Antecedent Taxonomies-The NvN Architecture Classification system has benefited
from previous computer architecture taxonomies. Some of the most significant of these
are discussed below.

Flynn's categorization of architectures [Flynn 1972] on the basis of instruction and data
streams (SISD, SIMD, MISD, MIMD) is still used to describe fundamental architecture
characteristics. It was not selected as the basis for this classification effort for several
reasons: (a) starting with such highlevel categories would require using many levels of
subcategorization, resulting in a cluttered hierarchy that would be difficult to compre-
hend; and (b) for this study's purposes it is more desirable to emphasize significant
architectural features, such as associative memory or cellular organization, at the first
level of categorization. However, Flynn's terminology provides a useful shorthand for
architectural description, and it is used in the NvNACS.

The taxonomy used by Haynes, et al (Haynes 1982] has influenced this classification
effort, especially in its use of aggregate machine characteristics to specify high-level

11-5

classes. Comparsons between the Haynes taxonomy and the NvNACS were made in the
preceding section.

The NvN Architecture survey effort has examined other overall computer architecture or
parallel architecture taxonomies, including those appearing in [Schwartz 1983], [Hillis
1985] and [Hockney and Jesshope 1981] (the latter contains a summary of Shore's 1973
classification scheme).

In addition, the NvNACS is indebted to the subtaxonomies for particular architectural
classes that were prepared by the following listed persons: [Treleaven, et. al. 1982], and
[Srini 19861 for operand-driven architectures; [Hockney and Jesshope 1981] for proces-
sor arrays; and [Yau and Fung 1977] for associative processors.

2.1.3 Class One: Pipelined Vector Uniprocessor Architectures

This class contains single CPU architectures that use special purpose functional units to perform
parallel arithmetic operations on vector elements. Such architectures are characterized by a
vectororiented instruction set; multiple, pipelined functional units for vector and scalar operations;
and a single, fast, scalar CPU [Fembach 1984], [Hwang 1984], [Kung 1984].

Despite having a single CPU, these architectures are justly regarded as NvN machines, since SIMD
vector instructions, pipelining, and multiple functional units all provide parallel execution. Note that
vector architectures that involve multiple scalar CPUs (e.g., ETA-10, Cray X-MP/4) or that drive
their functional units in lockstep with a broadcast instruction (Burroughs Scientific Processor) are
described under other NvN architecture types.

The distinguishing feature of this type of architecture-single instructions that implement vector
computations-are typically exploited for scientific and engineering applications, such as fluid
dynamics and seismic modeling.

The organization of the Pipelined Vector Uniprocessor class is shown in Figure 2-2.

Pipelined Vector
Uniprocessor

memory -to-memory[register-to-register

organiza tion organization

Figure 2-2. Pipelined Vector Uniprocessor Class

11-6

2.1.3.1 Pipelined Vector Uniprocessor Architectures: Subclassifications

1. Memory-to-Memory Operation Subclass-Architectures exhibiting memory-to-memory opera-
tion move operands and results directly to and from memory and pipelines.

2. Register-to-Register Operation Subclass-Architectures employing register-to-register opera-

tion move operands and results to a bank of vector registers during transfer operations.

2.1.3.2 Examples of Pipelined Vector Uniprocessor Architectures

Table 2-1 lists examples of pipelined vector uniprocessors.

Table 2-1. Examples of Pipelined Vector Uniprocessors

CLASS: Pipelined Vector Uniprocessor Architectures

SUBCLASS: Memory-to-Memory Operation
(1) CDC Star-100
(2) Cyber 205
(3) Texas Instruments Advanced Scientific Computer
(ASC)

SUBCLASS: Register-to-Register Operation
(1) Cray-1
(2) Fujitsu VP-200
(3) Galaxy (People's Republic of China)
(4) Hitachi S-810
(5) NEC SX-2

2.1.4 Class Two: Rhythmic Cellular Control Architectures

This NvNACS category contains systolic and wavefront array architectures, which exhibit rhythmic
cellular control as a principal feature. These architectures differ from more traditional array
processors in at least two significant ways. First, operands, rather than instructions, are broadcast
to PEs (Processing Elements). Second, operands are pulsed from PE to PE in rhythmic fashion. In
the case of systolic architectures the flow of operands is synchronized by a global clock, while
wavefront architectures control operand transmission through asynchronous handshaking.

Rhythmic Cellular Control architectures can be used to implement algorithms that perform regular,
predictable calculations. For example, they are often used for matrix operations involved in signal
processing (e.g., [Kandle 1987], [Nash 19871). However, programmable systolic arrays, such as
Warp [Annaratone 1986] and the Saxpy Matrix-1 [Foulser and Schreiber 1987], have been
constructed that are not limited to implementing a single algorithm. This class is organized as shown
in Figure 2-3.

11-7

Rhythmic
Cellular

Control

SystoliC Waront

Fixed Prgammable

Figure 2-3. Rhythmic Cellular Control Architectures

2.1.4.1 Rhythmic Cellular Control Architectures: Subclassifications

1. Systolic Architectures Subclass-Architectures in the Systolic Subclass have the follow-
ing characteristics, as described in [Kung 1982], [Kung 1984]:

• data is computed and passed through a network of processing elements in a rhythmic
fashion controlled by a global clock for synchronization;

• modular processing elements are united by regular, local interconnections;

• the collection of processing elements executes in pipelined fashion, pumping intermedi-
ate results to the next PE for further use;

* systolic systems show execution speed-ups pioportional to the number of processing
elements [Kung 1984];

* time delays of at least one time unit are used to synchronize operations [Kung 1984];

" only PEs at the boundaries of the PE array communicate with external memory [H.T.
Kung 1982].

a. Programmable Systolic Array Architectures Order-These systolic architectures are not
algorithm-specific: the functions performed by individual PEs (and often the local
connection topology) can be programmed to implement various algorithms.

b. Fixed Systolic Array Architectures Order-These architectures embody a specific
algorithm and cannot be changed to implement other algorithms.

11-8

2 Wavefront Architectures Subclass Wavefront architectures significantly differ from systolic
architectures in the following ways [Kung 1984]:

* wavefront architectures are asynchronous systems, in which the global synchronizing
clock of systolic architectures is replaced by data flow principles (i.e., an operation within
a PE takes place when the operands are available);

"b,

* the time delays of systolic systems are replaced with asynchronous handshaking betwec'
PEs.

2.1.4.2 Examples of Rhythmic Cellular Control Architectures

Table 2-2 lists examples of rhythmic cellular control architectures:

Table 2-2. Examples of Rhythmic Cellular Control Architectures

CLASS....Rhythmic Cellular Control Architectures

SUBCLASS: Systolic Architectures
ORDER: Programmable Systolic Architectures

(1) Matrix-1, Saxpy Computer Corporation
(2) WARP, Carnegie-Mellon University

ORDER: Fixed Systolic Architectures
(1) GaAs Systolic Array Beamforming Controller, RCA
(2) Systolic Adaptive Beamformer, ESL
(3) Advanced DSP Systolic Array Architecture, Motorola,
(4) Systolic/Cellular System, Hughes Research Laboratory
(5) Princeton Nucleic Acid Comparator, Princeton/Brown
(6) SLAPP (Systolic Linear Algebra Parallel Processor), Naval
Ocean Systems Center

SUBCLASS: Wavefront Architectures
(1) STC-RSRE Wavefront Array Processor System, Standard
Telecommunications Company/Royal Signals and Radar
Establishment (UK)
(2) Memory-Linked Wavefront Array Processor, Johns Hopkins
Applied Physics Laboratory

2.1.5 Class Three: Processor Array Architectures

Architectures in the Processor Array Class are characterized by multiple processors that coopera-
tively work in lockstep to perform the same operations on different data elements [Hwang 1984],
[Hockney and Jesshope 1981]. Typically, this type of architecture broadcasts a single instruction to
all PEs for execution, although some architectures allow individual PEs to disable or modify the
instruction. Processor array architectures may be distinguished from commercial ar-ay processors,
in wiich a pipelined uniprocessor uses an array of functional units in a pipeline stage, rather than an
array of processors ([Hockney and Jesshope 1981], pp. 22-23).

11-9

Processor array architectures are commonly used for scientific and engineering applications similar
to those found on vector processor architectures. In addition, bit-plane oriented processor array
architectures are particularly suitable for image processing applications. Representative applica-
tions include: solving partial differential equations, signal processing, weather forecasting, image
processing and nuclear energy modeling.

This class is organized as shown in Figure 2-4:

Figure 2-4. Processor Array Architectures

2. 1.5.1 Prcessor Array Architectures: Subclassifications

1. Bit-Oriented Architectures Subclass-This subclass contains architectures that are

composed of 1-bit PEs, which work in SIMD fashion. This subclass is further
decomposed into orders that reflect whether the PEs' interconnection topology is a grid
(mesh) associated with similarly structured memory elements or whether some alterna-
tive PE int:erconnection topology is used.

a. Bit-Plane Oriented Architecture Order-In a Bit-Plane Architecture, an array of 1-bit
processors is arranged in a symmetrical grid (e.g., 64x64) and is associated with multiple

planes of memory bits that correspond to the dimensions of the PE grid. PE(n), situated
in the processor grid location (x,y), operates on the memory bits at location (x,y) in all

the associated memory planes. Usually, operations are provided to copy, mask and
perform arithmetic operations on entire memory planes, as well as on columns and rows
within a plane.

b. Cross-Connected Topology Architecture Order-This order contains SIMD architec-
tures in which 1-bit PEs are organized in a topology other than a mesh structure. A salient
example is the Connection Machine tThinking Machines Corp.), which organizes 65,536
1-bit PEs (CM-2 model) in a hypercube topology that connects 4x4 PE meshes.

II-10

a.Bt-ln OinedAc itetr re-naBtPaeAcietra rafI-i

2. Word Oriented Architectures Subclass-This subclass is characterized by PEs that
accommodate full word-sized operands, as opposed to the 1-bit PEs subsumed under the
Bit Plane Oriented subclass. Operands are often floating point (or complex) values and
typically range in size from 32 to 64 bits. This subclass is further subdivided by
connection characteristics, following the distinctions presented by Hockney [Hockney
1981].

a. Nearest-Neighbor Mesh Topology Architectures Order-The architectures in this
order exhibit comparatively simple mesh-structured connections uniting nearest-neigh-
bor nodes composed of PEs and their associated memories.

b. Cross-Connected Topology Architectures Order-Following Hockney and Jesshope
[lockney 1981], we include in this order all word-oriented processor arrays that exhibit
inter-PE connection structures more complicated than a nearest-neighbor scheme.

2.1.5.2 Examples of Processor Array Architectures

Table 2-3 lists examples of processor array architectures.

Table 2-3. Examples of Processor Array Architectures

CLASS: Processor Array Architectures
SUBCLASS: Bit-Oriented Architectures

ORDER: Bit-Plane Architectures
(1) MPP (Massively Parallel Processor) , Loral(Goodyear Aerospace)
(2) DAP (Distributed Array Processor), ICL
(3) CLIP4, Imperial College, U.K.

ORDER: Cross-Connected Topology Architectures
(1) Connection Machine, Thinking Machines Corp.

SUBCLASS: Word-Oriented Architectures
ORDER: Nearest-Neighbor Mesh Topology Architectures

(1) Illiac IV, Burroughs
(2) PACS, Tsukuba University,

ORDER: Cross-Connected Topology Architectures
(1) Burroughs Scientific Processor (BSP), Burroughs
(2) GF1 1, IBM
(3) Teamed-Architecture Signal Processor (T-ASP), Motorola

2.1.6 Class Four: Associative Processor Architectures

This class contains architectures that are geared to associative memory proce sing and that constitute
a distinctive type of array processor. We informally define an associative processor as: (a) accessing

II-11

stored data according to its contents and (b) accessing and operating on multiple stored data items
through the execution of a single instruction (SIMD operation). The subcategories proposed below
follow the work presented in Associative Process Architre A Sure [Yau and Fung 19771.

This type of architecture is appropriate for applications that principally involve selecting data base
entries in parallel according to their contents. Recorded applications for associative memory-
processors include tracking and surveillance, cartography, image processing, and signal processing.

The organization of the Associative Processor Class is shown in Figure 2-5:

Associative
Processor

Architectures

ulyBit-Serial Wrd-serial Block-Oriente
Parallel W

Distriud Wor
Logic Organized

Figure 2-5. Associative Processor Architectures

2.1.6.1 Associative Processor Architectures: Subclassifications

1. Fully Parallel Subclass-In the Fully Parallel Subclass, all bits (or groups of bits) in a
given column of memory are accessed by an instruction, and multiple columns can be
accessed simultaneously.

a. Word-Organized Order-Processors in the Word-Organized Order have comparison
logic associated with each associative memory bit, and data is available at every memory
word's output. The column of memory accessed concurrently is 1 bit wide.

b. Distributed Logic Order-The Distributed Logic Order differs from the Word-
Organized Order in that the columns of concurrently accessed memory are several bits
wide, and typically contain enough bits to constitute a character.

2. Bit-Serial Subclass-The Bit-Serial subclass is distinguished by concurrently operating
on a single bit-slice (bit-column) of all the words in the associative memory module, but
not concurrently operating on multiple bit-slices.

3. Word-Serial Subclass-Essentially, architectures in this subclass use hardware to imple-
ment a loop construct for searching.

4. Block-Oriented Subclass-This subclass uses rotating memory devices (e.g., disk) as the

11-12

associative memory. It is not clear that this architecture category is currently viable and,

therefore, it may be of historical interest only.

2.1.6.2 Examples of Associative Processor Architectures

Table 2-4 lists examples of associative processor architectures.

Table 2-4. Examples of Associative Processor Architectures
CLASS: Associative Processor Architectures

SUBCLASS: Fully Parallel

ORDER: Word-Organized
ORDER: Distributed Logic

(1) PEPE (Parallel-Element Processing Ensemble)

SUBCLASS: Bit-Serial
(1) ALAP (Associative Linear Array Processor)
(2) ASPRO (militarized version of STARAN)
(3) ECAM (Extended Content Addressed Memory)
(4) OMEN (Sanders Associates)
(5) RAP (Ratheon Associative/Array Processor)
(6) STARAN

SUBCLASS: Word-Serial
(1) NEBULA experimental computer (circa. 1964-66)

SUBCLASS: Block-Oriented
(1) RAPID (Rotating Associative Processor for Information Dissemination)

2.1.7 Class Five: Operand-Driven Architectures

Data-Driven (Data Flow) and Demand-Driven (Reduction) architectures are both subsumed under
the Operand-Driven Class, since both are characterized by instruction execution that is driven by the
status of instruction operands. This common divergence from more traditional architectures
militates for placing both kinds of architectures in a common class. Since data-driven and demand-
driven architectures employ significantly different mechanisms for triggering instruction execution,
they are categorized in different Subclasses.

The organization of this Class is shown in Figure 2-6 on page 11-14.

2.1.7.1 Operand-Driven Architectures:. Subclassifications

1. Data-Driven (Data flow) Subclass--In data flow architectures, instructions are executed
when all of their operands are available; i.e., when any needed computations that reduce
expression operands to values have been performed. Multiple processors can handle the
instructions as they become enabled for execution.

11-13

2.Demao(Reduction) m n
Onanization

Fillitgoernd re iabl ea

* its result is needed as an operand for an instruction that is higher in the hierarchy and that
is also slated for execution.

3. An Overview of Machine Organization Order Categories--The Order classification
strata beneath both subclasses is based on the tripartite machine organization model that
was developed by Treleaven [Treleaven, et al, 1982].

a. Centralized Organization Orders-Centralized organization involves a single proces-

sor and single active instruction. It is possible to apply such a traditional architecture to
implementing the Demand-Driven (Reduction) subclass with the aid of special hardware
and microcoding (GMD, Cambridge SKIM reduction machines), although it is debatable
whether this really constitutes an NvN machine.

1I-14

Stoag

b. Packet Communication Organization Orders-Packet Communication organization
involves having multiple processing elements connected by a circular pipeline. Packets
of work (instructions) are distributed among the PEs as operand data becomes available
(data-driven subclass) or as the instruction results are demanded for use as operands
(demand-driven subclass).

c. Expression Manipulation Organization Orders-Expression Manipulation organiza-
tion uses multiple nodes, connected in a regular structure (e.g., tree or mesh), where each
node has processing, communications and memory capabilities. The structural adjacency
of elements in the input program is mapped onto the physical processing node structure.

d. Token Handling Mechanism Families Data-Driven Architectures-For data-driven
architectures, the family level of classification is made on the basis of whether token
storage or token matching is used.

(1) Token Storage Families (Data-Driven Architectures)

Token storage mechanisms store instruction results (operands for subsequent instruc-
tions) in the subsequent instruction as they become available.

(2) Token Matching Families (Data-Driven Architectures)

In a token matching scheme, the execution of an instruction typically produces two kinds
of result tokens--data result tokens and control tokens-that specify that a data result will
serve as a particular operand in a subsequent instruction. A functional unit matches
control tokens to instructions. When a complete set of control tokens (representing all
the required operands) is assembled for an instruction, the relevant results are copied from
storage into the instruction's operands and the instruction is then executed.

(3) Reduction Mechanism Families (Demand-Driven Architectures)

For demand-driven architectures, family level categorization is made on the basis of
whether a string or graph reduction mechanism is used in the evaluation of nested
expressions.

(a) String Reduction Families (Demand-Driven Architectures)

The String Reduction mechanism evaluates expressions consisting of literals and copies
of values.

(b) Graph Reduction Families (Demand-Driven Architectures)

The Graph Reduction mechanism evaluates expressions that consist of literals and
references (pointers) to values.

11-15

2.1.7.2 Examples of Operand-Driven Architectures

Table 2-5 lists examples of operand-driven architectures:

Table 2-5. Examples of Operand-Driven Architectures

CLASS: Operand-Driven Architectures
SUBCLASS: Data-Driven

ORDER: Centralized Organization
ORDER: Expression Manipulation Organization

(1) Utah Data-Driven Machine (insufficient data for family subclassification)
ORDER: Packet Communication Organization

FAMILY: Token Matching Mechanism
(1) Irvine Data Flow Machine
(2) Manchester Data Flow Computer
(3) M.I.T. Tagged Token Data Flow
(4) Newcastle Data-Control Flow Computer

FAMILY: Token Storage Mechanism
(1) M.I.T. Data Flow Computer
(2) Texas Instruments Distributed Data Processor
(3) Toulouse LAU System

SUBCLASS: Demand-Driven
ORDER: Centralized Organization

FAMILY: Graph Reduction Mechanism
(1) Cambridge SKIM Machine

FAMILY: String Reduction Mechanism
(1) GMD Reduction Machine

ORDER: Expression Manipulation Organization
FAMILY: Graph Reduction Mechanism
FAMILY: String Reduction Mechanism

(1) Newcastle Reduction Machine
(2) North Carolina Cellular Tree Machine

ORDER: Packet Communication Organization
FAMILY: Graph Reduction Mechanism

(1) Utah Applicative Multiprocessing System
FAMILY: String Reduction Mechanism

2.1.8 Class Six: General-Purpose Multiple-PE Architectures

The General-Purpose, Multiple-PE (GPMPE) class contains multiprocessor architectures that fall
outside of the other NvNACS classes and that share sufficient application flexibility to merit being
termed gener.: purpose. Since GPMPE architectures do not hold a fundamental design approach or
hardware feature in common, the class contains architectures that exhibit considerable diversity in

11-16

granularity of parallelism, topology, and PE size. Most of these architectures execute in MIMD
fashion, although some are capable of (M)SIMD or MIMD/SIMD operation.

In order to provide a systematic subclassification scheme for GPMPE architectures, subclassifica-
tions are made on the basis of whether processor-to-processor or processor-to-memory communi-
cations predominate, or whether the two are equally fundamental to the architecture. Further
subdivisions are based on topology (for processor-to-processor architectures) and interconnection
technology (for processor-to-memory architectures). The structure of the GPMPE class is shown
in Figure 2-7.

Tplogy

* Procesor-to-M am-Rin

2r M Processor Archi Topology
Communicatio nAs

c

Topologyopolo

[Reconfigurable I
L4._ Topology

Bus Connd
ulti-Comue

-8.-[Cossarre tucue

[orst Intercrn ection 4 Meonluubeer
1- I7opolDirec Mtsaeor

--|Interconnection ultiL

4Netwerork {ti Message
NetworkPssing

Processor-to-Processor L MI =hrd

L-- and Memory
"Proce ssot -to-Mlemory

Communications]

4d MIN

Figure 2-7. General-Purpose, Multiple-PE Architectures

2.1.8.1 General -Purpose, Multiple-Processor Architectures: Subclassifications

1. Processor-to-Processor Communication Architecture Subclass

a. Hypercube Topology Architecture Order-A boolean n-cube or hypercube topology
[Seitz 1985] uses N = 2**n processors arranged in an n-dimensional cube, where each

11-17

node has n = log2(N) bidirectional links to adjacent nodes. Individual nodes are uniquely
identified by n-bit numeric values that range from 0 to N-I and that are assigned in a
manner that ensures that the value of adjacent nodes' values differ by a single bit.
Messages contain a destination bit-value and a label initialized to the source node's bit-
value. When a processor routes a message, it first selects an adjacent node that has a bit
in common with the destination value (which the routing node lacks), then corrects that
bit of the message label. As a result of these conventions, the number of links traversed
by a message travelling from node A to node B is equal to the number of bits that differ
in the two nodes' bit-values; hence, the diameter of the Interconnection Network
(maximum bit-value difference) is n = log2(N).

(1) Ring Topology Architecture Order-Several GPMPE machines manufactured by
Control Data Corporation exemplify the ring topology approach to linking processors.
These machines use direct, hardwired connections to link each processor with its two
neighbors. Two ring networks are formed in this fashion: one ring transfers data in a
clockwise direction, while the other conducts counterclockwise transfers. Fixed-size
packets that include a destination address are sent between processors, passing from one
PE to another until reaching their destination processor. This ring interconnection ciffers
from a classical bus linkage in that multiple processors may simultaneously use the
interconnection network. Some versions of these machines provide a shared memory for
the processor nodes to access. Commercial ring topology architectures include the
Advanced Flexible Processor, the Cyberplus and the Parallel Modular Signal Processor
[Control Data Corp., August 1980, March 1996, and February 1987).

(2) Tree Topology Architecture Order-Tree topologies can readily be exploited to
partition some of a system's PEs into a processor set that executes in SIMD mode. The
concurrent operation of such processor sets and the remaining processors provides an
architecture with MIMD/SIMD and (M)SIMD capabilities. The hierarchical structure
inherent in tree topologies facilitates such partitioning, since the master/slave relation of
SIMD processor control can easily be mapped onto the node/descendent relation of the
tree structure. Communication diameter, however, is a potential problem for tree
topologies. For example, a complete binary tree with n levels (and 2n-I processors) has
a communication diameter of 2(n-1).

Proposed solutions to this problem include linking all the nodes at each level [Despain
and Patterson 1978] or, as is the case with DADO2 [Stolfo 1987], providing a specialized
I/O switch and combinational circuit that effectively links all nodes.

(3) Reconfigurable Topology Architecture Order-Although the components of GPMPE
architectures obviously possess an underlying physical topology, one can reasonably
designate architectures as reconfigurable topology machines if providing user-program-
mable interconnection topology is a fundamental aspect of their design. Physical

II-18

topologies that have been incorporated in reconfigurable topology architectures include
CHIP's mesh [Snyder 1982], [Kapauan, et al, 1984] and TRAC's Banyan [Lipovski and
Malek 1987].

It is the macroscopic capabilities these provide that make them reconfigurable topology
machines, since architectures offering different high-level capabilities (for example, a
high degree of fault-tolerance) can employ similar flexible interconnection techniques
[Adams et al, 1987], [Abraham et al, July 1987].

Reconfigurability functions range from specifying different topologies [Snyder 1982],
[Kapauan, et al, 1984] to partitioning a base topology into multiple interconnection
topologies of the same type [Siegel et al, 1987].

2. Processor-to-Memory Communication Architecture Subclass

a. Bus Interconnection Architecture Order Bus-based GPMPE architectures (e.g.,
Encore Multimax, ELXSI System 6400) use one or more buses to give multiple PEs
common access to a shared memory. Typically, a moderate number of processors (4-32)
are provided. Some bus-based architectures, such as the experimental Cm* system
developed at Carnegie Mellon University [Jones and Schwarz 1980], employ 2 kinds of
buses a local bus to serve PEs within a cluster, and a system bus that links dedicated
service processors associated with each cluster.

b. Crossbar Interconnection Architecture Order GPMPE architectures characterized by
crossbar interconnection technology use a crossbar switch of n**2 crosspoints to connect
n processors to n memories. Although processors may contend for access to the same
memory location, crossbar schemes prevent contention for communication links by
providing a dedicated pathway between each possible processor/memory pairing.
Power, pinout, and size considerations, however, have limited crossbar architectures to
a small number of processors (i.e., 4-16).

c. Direct Memory Access Interconnection Architecture Order

The term direct memory access is used here to designate GPMPE architectures in which
processors effectively share a global memory by copying an entire memory 'page' in a
single parallel operation, rather than by obtaining memory contents through sequential
byte or word-level operations.

In practice, DMA access to a shared memory is typically employed by vector processing
supercomputers (e.g., the Cray X-MP/4 and ETA-10) with 4-8 processors in order to
provide parallelism at the task level.

11-19

d. Multistage Interconnection Network (MIN) Architecture Order

These architectures use a multistage interconnection network (MIN) [Bhuyan 1987],
[Siegel 1985] to connect processors and memories. A MIN deploys multiple stages or
banks of switches in the pathway connecting the processors and memories. A popular
approach is to connect n processors to n memories by using log2(n) stages of n/2 switches:
where each switch accommodates two inputs and two outputs. Proposed variations of
such log2(n) stage MINs include the omega, flip, indirect binary n-cube, SW-banyan,
butterfly, multistage shuffle-exchange, baseline, delta, and generalized cube networks
[Bhuyan 1987], [Siegel 1985], [Miller 1988]. A significant feature of these architectures
is their expandability, accruing from a communication diameter that is proportional to
log2(n).

3. Processor-to-Processor and Processor-to-Memory Communication Architecture Sub-
class

Although NvN architectures often feature either processor-to-processor or processor-to-
memory interconnection networks, both kinds of communication can be provided by a
GPMPE architecture. The Texas Reconfigurable Array Computer (TRAC) [Lipovski
and Malek 1987] is an example of this hybrid approach.

Reconfigurable topology is an essential feature of TRAC, which allows programmable
interconnections linking processors, memories and 1/0 devices. TRAC provides both
circuit and packet switching interconnections.

2.1.8.2 Classifying General-Purpose, Multiple Processors

Table 2-6 on page 11-21 shows examples of General-Purpose, Multiple-PE architectures.

2.1.9 Class Seven: Neural Networks Architectures

Neural networks are connectionist architectures [Fahlman and Hinton 1987] characterized by simple
PEs linked by an interconnection network. The state of weighted PE interconnections embodies
program knowledge, typically a function for mapping inputs to desired outputs.

There are significant differences among existing and proposed neural networks, although there are
some common basic organizational principles:

• the behavior of PEs and interconnections reflects a simplified model of biological
neurons and synapses.

11-20

Table 2-6. Examples of General-Purpose, Multiple-PE Architectures
CLASS...General Purpose, Multiple-PE Architectures

SUBCLASS: Processor-to-Processor Communication Architectures
ORDER: Hypercube Topology Architectures

(1) Ametek Series 2010
(2) Cosmic Cube, California Institute of Technology
(3) Intel Personal Supercomputer (iPSC), Intel Corp.
(4) NCUBE/10

ORDER: Ring Topology Architectures
(1) Advanced Flexible Processor, Control Data Corp.
(2) Cyberplus, Control Data Corp.
(3) Parallel Modular Signal Processor, Control Data Corp.

ORDER: Tree Topology Architectures

(1) DADO2, Columbia University
(2) NON-VON, Columbia University

ORDER: Reconfigurable Topology Architectures

(1) Armstrong Multicomputer, Brown University
(2) Configurable Highly Parallel multicomputer (CHiP), University of Washington
(3) Computing Surface, Meiko (U.K.)
(4) PASM, Purdue University
(5) TRAC, University of Texas

SUBCLASS: Processor-to-Memory Communication Architectures
ORDER: Bus Interconnection Architectures

(I) Cm*, Carnegie-Mellon University
(2) Encore Multimax, Encore Computer Corporation
(3) ELXSI System 6400, ELXSI
(4) FLEX/32, Flexible Corporation
(5) SPUR, University of California, Berkeley

ORDER: Crossbar Interconnection Architectures
(1) Alliant FX/8, Alliant Computer Systems Corp.
(2) S-1, U.S. Navy

ORDER: Direct Memory Access Interconnection Architectures
(1) Cray X-MP/4, Cray Research
(2) ETA-10, Control Data Corp.

ORDER: Multistage Interconnection Network (MIN) Architectures
(1) Butterfly Parallel Processor, Bolt Beranek and Newman
(2) CEDAR, University of Illinois
(3) HEP, Denelcor Inc.
(4) RP3, IBM
(5) Ultracomputer, New York University

SUBCLASS: Processor-to-Processor and Processor-to-Memory Communication Architectures
(1) TRAC, University of Texas

a PE's output is usually calculated as a function of weighted inputs from other PEs,
subject to thresholding [Graf et al, 1988].

* the interconnection network that carries weighted inputs and outputs exhibits a directed-
graph topology and is often organized in layers.

* the interconnectivity of the network can be engineered to make individual PEs sensitive
to the global network state [Fahlman and Hinton 1987], [Graf, Jackel and Hubbard 1988].

" PEs adjust theiroutput calculation rules dynamically-by altering the weights associated
with inputs from other PEs-in order to give the system an adaptive character.

11-21

Various neural network learning algorithms and paradigms for dynamic weight adjustment have
been proposed. Table 2-7 lists seven learning algorithms.

Table 2-7. Neural Network Learning Algorithms

Adaptive Resonance Theory [Carpenter and Grossberg 1987]
AR-P [Barto 1985)
Backpropagation [Rumelhart, Hinton, and Williams 1986]
Competitive Learning [von der Malsburg 1973]

[Grossberg 1976]
Counterpropagation [Hecht-Nielsen 1988]
Hopfield Energy Minimization [Hopfield 1982]

[Hopfield and Tank 1985]
Kohonen Learning [Kohonen 1984]

2.1.9.1 Neural Network Architecture: Subclassifications

The subclassification system for neural network architectures is still at an embryonic stage, because
comparatively few machines based on neural network principles have actually been built. Many
neural network products are actually software packages that model proposed neural network
functioning.

1. Emulation Coprocessor Subclass This subclass consists of coprocessors, typically organized at
the board level, which run dedicated software that models neural network functioning. Note that this
hardware usually employs von Neumann microprocessors and does not constitute a neural network
implementation. These processors are included in the NvNACS to satisfy the completeness
criterion.

2. Hardware Neural Network Implementations Subclass The architectures in this class physically
embody the neural network characteristics discussed above. This subclass can be further articulated
to the Order taxonomic level when the sample of hardware neural networks is large enough to
reasonably support further subclassification.

2.1.9.2 Examples of Neural Network Architectures

Table 2-8 shows examples of Neural Network Architectures.

Table 2-8. Examples of Neural Network Architectures

CLASS: Neural Network Architectures

SUBCLASS: Emulation Coprocessors

(1) Anza-Pus Neurocomputing Coprocessor, Hecht-Nielsen
Neurocomputers
(2) Neural Phonetic Typewriter, Kohonen (Helsinki Univ. of Technology

SUBCLASS: Hardware Neural Network Implementations

(1) CMOS VLSI Neural Network, AT&T Bell Labs
(2) Neural Network Chip, Bell Communications Research
(3) Resistive Networks, Koch and Mead (Caltech)
(4) Speech Recognition Circuit, Hopfield (Caltech),

Tank and Unnikrishnan (AT&T Bell Labs)

11-22

2.1.10 ARCHITECTURE DESCRIPTIONS

This section, containing Non-von Neumann Architecture data is included to show the kind
of information that shaped the NvNACS.

Name Alliant FXi8
Company Alliant Computer Systems Corp.
Stream M]MD
Commtecho circuit-switching crossbar
Comrnmtopo crossbar
Control UNKNOWN_
Assign TBD Memory: SHARED
Synch UNIVERSAL
Max-cpu 20 (8 vector PEs + 12 interactive processors)
Cpu-size 64
Perform 94.4 Mflops (32-bit vectors); 47.2 MFLOPS (64-bit vectors) [Dongarra 1987]
Market Engineering and scientfic
Softwarei Concentnix-OS;PascalC;FORTRAN 77 with VAX/VMS extensions
Software2 FORTRAN 8x array extensions; debugger, auto-vectorizaton and parallel

detection
Commentl Pipelined vector machine
Comment2

Name Ametek Series 2010

Company Ametek
Stream MIMD
Commtecho wormhole-To uing (hardware routing chips)
Commtopo 2D mesh (with 4x4 submeshes)
Control DECENTRALIZED
Assign HYBRID Memory: PRIVATE
Synch CONDITIONAL
Max-Cpu
Cpu-size 32-bit (Motorola 68020 + microprogrammed queue-manager PE)
Perform
Market
Softwarel uses Caltech "Cosmic EnvironmentRea"tive Kernel" O.S
Software2
Commentl [Athas and Seitz 1988]
Comment2

Name Anza-Plus Neurocomputing Coprocessor System
Company Hecht-Nielsen Neurocomputer
St-eam
Commtecho
Commtopo
Control CENTRALIZED
Assign STATIC Memory:TBE
Synch UNIVERSAL
Max-cpu up to 2.5M PEa and interconneetions"
Cpusize 32 bit processing (2OMflops)
Perform
Market
Softwarel
Software2
Comment] use with IBM PC-AT or 80386;"Neurosoft" software; treats neural
Comment2 network as callable "C routines". 2 or 10MB memory

11-23

Name Armstong MUlticoMpUwer
Company Brown University
Stream MIMD
Commtecho poim-to-point (pwgrammable 10 imerconnect)
Commtopo reconfigurable (meshtree,etc.)
Control DECENTRALIZED
Assign TBD Memory: PRIVATE
Synch CONDITIONAL
Max.cpu 100 (current 68)
Cpu-size 32 (Motorola 68010k National. Semiconductor 32081 floating point)
Perform (.SMIP individual PEs)
Market
Softwarel C with send/receive extensions for message-passing
Software2
Comment] data from [Rayfield and Silverman 1988]
Comment2

Name ASPRO (Associative Processor)
Company Loral Syswem Group (formatty Goodyear Aerospace)
Stream SIMD
Comnztech0
Commtopo
Control CENTRALIZED
Assign TED Memory:TBE
Synch UNIVERSAL
Max-cpu 1792 (in application, but can be more)
Cpu.size 16 (indndnt CPUembd ctrl prcssr); (32bit 68020)
Perform 4OMops [Loral telephone conversation]
Market NAVY/Grumman E-2C AEW airrft;ar/ship track/survl/C31
Softwarel VAX/VMS & UNIX OS;Fotwan, OPS-83 (expert system tool)
Software2 and ASPRO assembler
Commentl ASPRO=smaler.rnilitarized STARAN
Conrment2

Name Boltzmann Machine
Company Company
Stream
Commiecho
Comnmtopo
Control CENTRALIZED
Assign STATIC Memory:TBE
Synch UNIVERSAL
Max-cpu
Cpu-size
Perform
Market
Software]
Software2
Commentd This has become a 'generic' name for a class of neural
Comment2 network machines

Name BSP (Burroughs Scientific Processor)
Company Burroughs Corp.
Stream SIMD
Commtecho (see below)
Commtopo crossbar network (PE-to-Memory)
Control CENTRALIZED
Assign STATIC Memory: SHARED
Synch UNIVERSAL
Max-cpu 16 PEs
Cpu-size 48 (instruction word length)
Perform 50MFLOPS [Mzfler 1987]
Market Weather, nuclear energy, seismic, structural anal,ysis economic simulation
Software1
Software2
Commentl Vector machine, pipelined. array organization
Comment2 "horizontal rruciocode" organization [Schwartz 1983]

11-24

Name Butterfly Parallel ProcessorCompany Boll, Bernek and Newman
Stream MIMI)
Commtech asynchronous packet-switching MINCommtho butterfly
Commopo DECENTRALIZED
Control DYNAMIC Memory: SHARED
Assign CONDITIONAL
Synch 256
Cpusize 32 (M68020/8 1)

Perform One of 3 DARPA SDI machines
Mare Chrysalis semi-Unix OS; C & FORTRAN with parallel extensionsSoftware2 LISP under development [Dongarra 1987]Comment 1 Mem = when booted physically separate memory chipsComment2 Configured into virtual memory; all Processors can access all Memories

Name CDC Star- 100
Company Control Data Corporation
Stream SIMD
Commtecho NA uniprocessor
Commtopo NA uniprocessor
Control CENTRALIZED
Assign TBD Memory:TBE
Synch TBS
Maxcpu 1
Cpusize 64 (bit operands)
Perform 40 MFLOPS [Hwang 1984]
Market hydrodynamics, fluid dynamics (Navier-Stokes equations)
Softwarel
Sofiware2
Commentl Memory-to-Memory; 2 pipes; 40Mflops
Comment2

Name CEDAR
Company University of Illinois
Stream MIMD
CommtechO 0 packet-switch MIN (global);circ-switch crossbar (local)
Commiopo omega (gbl); shuffle net with 8x8 crossbar (local cluster)
Control DECENTRALIZED
Assign DYNAMIC Memory: BOTH
Synch CONDITIONAL
Maxcpu 32 (4 clusters x 8) as of'87
Cpu-size 64 (from Alliant FX/8 clusters)
Perform
Market general
Softwarel UNIX-like Xylem OS; Cedar FORTRAN compiler is superset
Software2 of FORTRAN 8x; have FORTRAN77 to Cedar FORTRAN translator
Commentl AJiiani FX/8 clusters with global shared memory
Comment2

Name Celerity 6000 (1
Company Celerity
Stream SIMD
CommtechO
Commtopo
Control UNKNOWN
Assign TBD Memory:TBE
Synch TBS
Max.cpu 4 processors (+ vector coprocessor)
Cpu size unknown
Perform
Market
Softwarl automatic vectorization of FORTRAN7 code
Softwar2
Commentl vector coprocessor has 8 '1024-4emnt' vector register
Comment2

11-25

Name CHiP (Configurable Highly Parallel MUnicomputer)
Company Purdue University and Washington University
Stream MIMD
Commtecho asynchronous programmable arc-switch MiN (Procesaor-to-Processor)
Commtopo proammabl "switch latice" mesh can be - tree rus~ec.
Control EMRTALIZED
Assign STATIC Memory: PRIVATE
Synch UNIVERSAL
Maxcpu 64K (256-64K) prototype had 64
C U-size 16 plamed (prototype was 8-bits)
Performn
Market "Pringle" version solved systems of line equations
Sofiwarl
Softwar2
Comment l Gannon-can mimick systolic array; often did in tests
Comment2 Snyder-systolic examples misleadis ruconfigunble topology MIMD

Name Cm* Machine
Company Carnie- e'Mel1on Uidversity

Commtecho 0 packet-switching bus (P-M)
Commtopo lntracluser-linear,MAP-bus;interclus-misceg.Star
Control DECENTRALIZED
Assign DYNAMIC Memory: SHARED
Synch CONDITIONAL
Max-cpu 50
Cpu.size 16 (DEC LSI- 11)
Perform
Market Simulation. testbed
Sofiwarl
Softwar2
Comment1 Differs from C.mmp. which used crossbar
Comment2

Name CMOS VLSI Neural Network[C]
Company A T & T Bell Labs
Stream
Commtecho VLSI analog
Commtopo mesh (54x54) programmable interconnections
Control CENTRALIZED
Assign STATIC Memory:TBE
Synch UNIVERSAL
Max-cpu 54 (amplifier pairs serves as PEs)
Cpusize 54 (effective vector length)
Perform
Market (experimental) machine vision; character recognition
Softwarl
Soflwar2
Commentl mini front-end; analog IN but digital registers; can
Comment2 organize PEs as vector or 'label' (output match) units

Name Connection Machine
Company Thinking Machines Corp.
Stream SIMD-HillisP.61
Commtecho synchraous packet-switching MIN
Commtopo (a) 4x4 meshes (b) connected by hypercube network
Control CENTRALIZED
Assign HYBRID Memory: PRIVATE
Synch UNIVERSAL
Max-cpu (a) 65,536 PEs (CM-2 model); (b) 16,384 (CM-1)
Cpu-size 1-bit PEs
Perform 1000Mips (expeced) [Dongarra 1987]
Market Image processing, simulation, FFrs, A] (I of 3 DARPA SDI machine
Softwarl CM-C (C language); CM-Lisp; REL-2 assembly language
Softwar2
Commentl synchronization=microcontro~lerHilhis p. 20
Comment. hybrid assignment

11-26

Name Convex C-I XL/XP
Company Convex Computer Corp.
Stream MIMD
CommwrnchO SOMbit/sec fiber optc coaxial cable
Corrntopo
Control DECENTRAU7ED
Assign TBD Memory:TBE
Synch CONDMONAL
Max-cpu 240
CPU-hize 64
Perform 40MFLOPS (32bit);20MFLOPS (64bit); LINPACK-> 3-4 MFLOPS
Market Aerospace.signal and image processing, seismic. simul ation
Softwarl vectorizing FORTRAN and C compilers that both accept VAX
Sofrwar2 VMS FORTRAN statements
Commenti Vector tegister-to-register architectre; pipelined
Comment2 Functional units.

Name Computing Surface
Company Meiko (Great Britain)
Stream MIMD/SIMD
CommtechO asynchronous circuit-switching MIN
Comnmtopo reconfig. (hypercube/ring)
Control DECENTRALIZED
Assign DYNAMIC Memory: PRIVATE
Synch CONDITIONAL
Max cpu 512 (installed); 1024 in progress
Cpu size 32-bit
Perform 1.2 megaflops per PE (IEEE multiply)
Market graphics, image processing. simulationnumeric analysis
Softwarl FORTRAN, C, Pascal,
Softwar2 Occam II for high parallel efficiency
Commentl TRANSPUTER is basic PE building block
Comment2

Name COSMIC CUBE
Company California Institute of Technology
Stream MIMD
Commtecho asynchronous message-passing point-point (P-P)
Commtopo hypercube (6-cube)
Control DECENTRALIZED
Assign HYBRID Memory: PRIVATE
Synch CONDITIONAL
Max-cpu 64
CpU-size 16
Perform
Market astrophysics,quantum chemistry.fluid and structural mechanics
Softwarl
Softwar2
Commenti direct message-passing system
Comment2 point-to-point communications channels

Name Cray X-MP/4

Company Cray Research, Inc.
Stream MIMD

Commtecho DMA
Commtopo Star (all PE5 have parallel DMA to shared central memory)
Control CENTRALIED
Assign DYNAMIC Memory: SHARED

Synch CONDITIONAL
kcpu 4

Cpu_size 64
Perform 940Mflops (235/PE x 4) [Dongarra 1987]
Market Scientific and engineering
Sofiwarl Vectorizing compilers for Cray FORTRAN (CFI), CFT77, C
Softwar2 Pascal; OS = COS, UNICOS (Unix version), CTSS
Commenti Multitasking or multiprogramming modes
Comment2 Pipelined vector architecture; multiple functional units

11-27

Name Cray-1
Company Cray Research Inc.
Stream SIMD
CommtechQ NA uniprocessor
Commtopo NA umprocesor
Control CENTRALIZED
Assign TBD Memory: PRIVATE
Synch UNIVERSAL
Maxcpu I s"alar master. 12 "unifunction" pipes
Cpu..size 32 (and 16-bit) instruction length
Perform 160Mflops [Dongarra 1987]
Market Scientific and enpneeing
Softwarl automatic vectorizadon of Cray FORTRAN (CF) code
Softwar2
Commentl pipelined SIMD Register-to-Register machine
Comment2

Name Cray-1
Company Cray Research Inc.
Stream SIMD
Commtecho NA uniprocessor
Commtopo NA uniprocessor
Control CENTRALIZED
Assign TBD Memory: PRIVATE
Synch UNIVERSAL
Maxcpu I scalar master, 12 "unifuncton" pipes
Cpusize 32 (and 16-bit) instruction length
Perform 160Mflops [Dongarm 1987]
Market Scientific and engineering
Sofiwarl automatic vectorization of Cray FORTRAN (CFT) code
Softwa-2
Comment] pipelined SIMD; Register-to-Register machine
Comment2

Name Cyberplus
Company Control Data Corp.
Stream MIMD
Commtecho synchronous packet-switched decentralized MIN
Commtopo multiring packet switch, 16bit rings:host-to-processorprocessor-to-proc
Control DECENTRALIZED
Assign STATIC Memory: PRIVATE
Synch UNIVERSAL
Max-cpu 64
Cpu-size 64
Perform (100/PE x 256 max) [Dongarra 1987]
Market numerical analysis, signal processing
Sofiwarl assembler, FORTRAN compiler
Softwar2
Commentl PEs- 2 internal crossbars unite multiple functional
Comment2 units within PEs

Name DADO2
Company Columbia University
Stream SIMD/MIMD
Commtecho "specialized 10 switch" tree-MIN
Commtopo complete binary tree
Control DECENTRALIZED
Assign STATIC Memory: PRIVATE
Synch UNIVERSAL
Max-cpu 1023
Cpu-size 8
Perform
Market Al prod sys;speech recog:sonardigital signal proc
Softwarl Parallel C, Lisp, PL/M [Stolfo 1987]
Softwar2
Commentl 32-boads:under 2 cubic ft; possible VHSIC vers from
Comment2 Raytheon, Martin M.

11-28

Name DAP (Distrbuted Array Processor)
Company International Computer Limited (ICL-Eng)
Stream SIMD
CommiechO (synchronous)
Commtopo mesh, various config...32x32...256x256
Control CENTRALIUED
Assign STATIC Memory:SHARED
Synch UNIVERSAL
Max-cpu 4096 (64x64 grid); each bit PE has 4096 bits of memory
Cpu_size 1-bit PEs
Perform
Market Numerical, Monte Cado simulation; image processing
Softwarl Unix host has cross-compilers and run-time debugger,
Softwar2 Enhanced Fortmran compiler has most FORTRAN8x army extensions
Commentl similar to MPP bit-plane organizaion
Comment2 bit-serial,word-parael operalions;DAP-3 ret to 32x32 PE

Name Data Driven Machine 1
Company University Utah (ALL Davis)
Strearn
Commtecho 1x8 switch at each (tree node) PE
Commtopo 8-ary tree
Control UNKNOWN
Assign DYNAMIC Memory: PRIVATE
Synch CONDITIONAL
Maxcpu
Cpu-size
Perform tokens aren't tagged; token storage and enabling counter
Market
Softwarl
Softwar2 data-driven.expression-maipul-organization
Commenti note: according to Dr. Srini (UCB) DDM2 project terminated
Comnment2

Name ELI (Enormously Longword Instruction)
Company Yale University (Joseph Fisher)
Stream
Commtecho Oclusterbus
Commtopo ring (nearest neighbor and some 'removed' communication)
Control UKNOWN
Assign TBD Memory : PRIVATE
Synch TBS
Max-cpu 16 (in 'cluster' ring)
Cpu-size 500+ (this was project's emphasis)
Perform
Market
Softwarl
Softwar2
Commenti This project was terminated in 1984
Comment2 Apparently no machine was ever built at Yale

Name ELXSI System 6400
Company ELXSI (sub of Trilogy. Ltd.)
Stream MIMD
CommtechO Bus
Commtopo linear
Control UNKNOWN
Assign TBD Memory :SHARED
Synch TBS
Max-Cpu 12 (up to 16?)
Cpuize 64
Perform
Market
Softwarl EMBOS message-based OS and Elxsi version of Unix
Softwar2 FORTRAN77, Pascal, COBOL74, C. MAINSAIL
Commentl
Comment2

11-29

Name Encore Multmnax
Company Encore Computer Corp.
Stream MIMI)
Commtech0 synchronous shared bus (P-M)
Commtopo linear (wide "Nanobus")
Control CENTRALIZED
Assign DYNAMIC Memory :SHARED
Synch CONDITIONAL
Maxcpu 20
Cpu-size 32 (National Semiconductor 32032 or 32332 w/ 3208 flpt)
Perform 15Mips (quoted) [Dongarra 1987]
Market general-purpose [Encore data sheet 1988]
Softwarl Unix 4.2 with C, Pascal. FORTRAN
Softwar2
Comment1 Emphasis: fast bus, shared memory with private PE cache
Comment2 Medium/coarse grain parallelism

Name ETA-10
Company ETA Systems, Inc. (Control Data subsidiary)
Stream MIMD/(M)SIMD
Commtech0 DMA between CPUs and Shared Mem
Commtopo each CPU direct to Shared Memory
Control CENTRALIZED
Assign DYNAMIC Memory :SHARED
Synch CONDITIONAL
Max-cpu 8 (+18 1/0 processors and coordinating service processor)
Cpu-size 64
Perform 10,000Mflops (1250/PE x 8) [Dongarra 1987]
Market Scientific and engineering
Softwar I Virtual mer OS; UNIX compatible; Auto-Vectorizing FORTRAN
Sofrwar2 debugger, performance analyzer, code maintenance tools
Commentl 4MB local memory + 256MB shared memory
Comment2 cpu = scalar unit + double-pipelined vector

Name FACOM Vector Processing System (VP-200)
Company Fujitsu Ltd.
Stream SIMD
Commtech0 NA - uniprocessor
Commtopo NA - uniprocessor
Control CENTRALIZED
Assign STATIC Memory : PRIVATE
Synch UNIVERSAL
Max-cpu 1 scalar, 1 mask, 6 vector pipes
Cpu-size 64 (fltptops)
Perform 1142 (400 model) [Dongarra 1987]
Market numerical (VLSI design, oil and nuclear simulation)
Softwarl auto vectorizing FORTRAN; interactive debugger and vectorizer
Softwar2 perf. analyzer & scientific library (223 routines)
Comment 1 pipelined; multiple funct'a units; register-to-register machine
Comment2 decoding and scalar operations unit

Name Fifth Generation Computer System (FGCS)
Company University of Tokyo
Stream
Commtech0
Commtopo
Control DECENTRALIZED
Assign TBD Memory :BOTH
Synch TBS
Max-cpu approximately 1000 PEs (tological inferences)
Cpu-size
Perform
Market
Softwarl
Softwar2
Comment] not an architecture per se; a concept emphasizing DB-architectures.
Comment2 speech encoding; direct PROLOG execunon;AI Production System

11-30

Name FLEX/32 Mulicomputer
Company FLexible Corporation
Stream MIMD
CommtechO (VME) Bus
Commtopo
Control DECENTRALIZED
Assign TBD Memory :SHARED
Syncn CONDItIONAL
Max-cpu "Claimed limit" = 20480
Cpu-size 32-bit
Perform I Mip/PE (NS 32032): 1 Mflop/PE with floating point accelerator
Market
Softwarl UNIX System V on each PE with concurrency extensions
Softwar2 FLEX's MMOS real-time OS; FORTRAN77, Ratfor, C
Commentl Flexible configurations of local and common memory
Comment2

Name Galaxy (YH-1)
Company People's Republic of China
Stream SIMD
Commtecho NA - uniprocessor
Commtopo NA - uniprocessor
Control UNKNOWN
Assign STATIC Memory: PRIVATE
Synch TBS
Max-cpu I
Cpu-size
Perform 120Mflops [Hwang 1984]
Market
Softwarl
Softwar2
Comment I register-to-register vector architecture
Comment2

Name GFI I
Company IBM
Stream SIMD
Commtecho Memphis switch (P-M)
Commtopo programmable Benes net.; hypercubic lattice for QCD
Control CENTRALIZED
Assign STATIC Memory :SHARED
Synch UNIVERSAL
Max-cpu 566 Proessor boards (each = 4 floating point units, 2 multipliers)
Cpu-size 32-bit floating point chips
Perform 11.4 Gflops
Market quantum chromodynamics (QCD) calcalations
Softwarl microcode on PEs, C augmented with special procedures on control
Softwar2 Cpu; Pascal on IBM 3090 host for algoithm expression
Commentl 3 stage memory per board; 256word register file.16K static
Comment2 RAM, 512K dynamic RAM

Name HEP
Company Denelcor
Strearm MIMD
Con.echo Synchronous pipelined packet-switching MIN (P-M)
Commtopo Reconfigurable graph
Control DECENTRALIZED
Assign STATIC Memory :SHARED

=Ch CONDITIONAL
-CPUl 16 (variable)

Cpu..mze 64
Perform 160Mflops (10/PE x 16) [Dongarra 1987)
Market General-purpose and scientific
Sofiwarl Unix In, line w algebra kernels; FORTRAN77, C, Pascal
Sofkwar2
Commentl Pipelning and multiple functional units, parallelism
CommenL2 At the process level Denelcor no longer exists

11-31

Name Hitachi S-810
Company Hitachi
Satram SIMD
CommtechO NA - uniprocessor
Commtopo NA
Control CENTRALIZED
Assign STATIC Memory PRI VATE
Synch UNIVERSAL
Max-CPu I

Perform 840Mflops [Dongarra 1987] 500MIlops [Hwang 1984]
Market Scientific and engineering
Softwarl
Softwar2
Commentl register-to-register pipelined achitecture
Comment2

Name 1liac IV
Company Burroughs
Stream SIMD
Commtecho (synch) bus (P-P)
Comnutopo 8x8 mesh (equiv "nearest neighbor')
Conrol CENTRALIZED
Assign S'IATIC M-nory: PRIVATE
Synch UNIVERSAL
Max-cpu 64
Cpu-size 64 (can parition as 2-32bitetc)
Perform
Market Scientific (parial differential equations)
Softwarel
Software2
Commentl Non-pipelined [Jordan 1983]; lockstep operation
Conment2

Name iPSC (Intel Personal SuperComputer)
Company Intel
Stream SI{D
Commtech 0 Asynchronous MIN
Commtopo Hypercube
Control UNKNOWN
Assign TBD Memory: PRIVATE
Synch CONDITIONAL
Max-Cpu 128
Cpu-size 16
Perform 12SOMflops (short precis.;64-node) [Dongarra 19871
Market Scientific
Sofiwarel Microsoft Xenix 3.0; FORTRAN, C, LISP, ASM286,
Software2 FCP (Flat Concurnt Prolog); Debugger
Commentl (node/PEs based on $0286 chip)
Comment2 Private memory, message-passing system

Name Matrx-1
Company Saxpy Computer Corp
Stream SIMD
CommtechO synch circuit-switched "partial crossbar"
Commtopo 3 data paths: systolic,SIMD-broadcast, local memory-MLx-.face
Control CENTRALIZED
Assign STATIC Memory :BOTH
Synch UNIVERSAL
Max-cpu 32 (8,16.24)
Cpu-size 32
Perform 1000Mflops (Foulser 1987]
Market signal-processing. mamix operations
Softwarel "VMS- FORTRAN 77, Pascal, Ada, C [Dongarra 1987]
Software2 Matrix mash routine libraries
Commentl programmable systolic architecture
Comment2

11-32

Name MIT Data-Flow Computer
Company MIT (Dennis - 1979)
Stream MIMD
CommtechO 0 packet-switching BUS
Commtopo
Control UNKNOWN
Assign TBD Memory :SHARED
Synch CONDITIONAL
Max-Cpu
Cpu-size 32-bits (in Mandala project [Srini 1986])
Perform
Market
Software] Ackerman's single-assignment "VAL" language influenced
Software2 project (see (Treleaven 1982])
Commentl Not built, but concepts used by others [Srini 1986]
Comment2 'Static' token storage architecture

Name MPP (Massively Parallel Processor)
Company Loral Systems Group
Stream SIMD
Commtecho Bi-directinal data bus (PE groups on VLSI chip)
Commtopo 128x1 28 nearest neighbor mesh (programmable wrap)
Control CENTRALIZED
Assign STATIC Memory :SHARED
Synch UNIVERSAL
Max-cpu 16384 1 b-PE/'plane" and aay control unit for scalar ait
Cpusize 1-bit (for 16,384 array PEs); 64-bit for control unit
Perform 400Mflops [Dongarra 1987]
Malket Satellite imagery
Softwarel Parallel Pascal
Sofrware2
Commentl
Comment2

Name NCUBE/10
Company NCUBE (Beavenon, Ore)
Stream MIMD
Commtecho
Commtopo hypercube
Control DECENTRALIZED
Assign TBD Memory: PRIVATE
Synch CONDITIONAL
Max-cpu 1024
Cpu-size 32
Perform 0.3-0.5 megaflops per node [Wiley 871
Market
Softwarel
Softwa2
Commentl special single chip 32-bit CPU with 1I bidirectional comm
Comment2 channels and memory controller [Wiley 1987]

Name NEC SX-2
Company NEC
Streamn SIMD
Comnmtecho NA - uniprocessor
Commtopo NA - uniprocessor
Control CENTRALIZED
Assign STATIC Memory: PRIVATE
Synch UNIVERSAL
Max-cpu I scalar, 1 mask unit. 16 parallel units/4 veclor pipes
Cpu_sizeperform 1300Mflops [Dongarra 19871, [Hwang 1984]

Market Scientific and engineering
Softwarel Auto vectorizng FORTRAN77; vectorizng and analyzer tools;
Software2 ALGOL.PL/I .BASICPascal.LISP,CPROLOG.COBOL
Commentl register-to-register, pipelined wchitecture
CommenQ2

11-33

Name NETL
Compny Camegie-Mellon University (Dr. Scon E. Fahlman)
Stream
Corrmecho
Commtopo
Control CENTRALIZED
Assign TBD Memory: PRIVATE
Syu,;h UNIVERSALMaxCpu
Cpusize I! 4/27 phone conversation with Fahinn - project temninated
Perform
Market store and access "assertions"
Softwarel
Software2
Comment I Al 'connetionist' arcItecture to implement semantic
Comment2 networks (i.e., semantic relation graphs)

Name Neural Phonetic Typewriter
Company Helsinli University of Technology (Dr. Teuvo Kohonen)
Stream
Commiecho bus
Commtopo
Control CENTRALIZED
Assign STATIC Memory: TBE
Synch UNIVERSAL
Max.cpu 4=PC host + 2 std. signal processing chips + 80186
Cpu-size (see above)
Perform
Market phonetic transcriptions of Finnish and Japanese
Software]
Software2
Commentl coprocessor-board=80186(conroLruting).TMS32010(2 for FFT)
Comment2 virtual neurons, speech learning templates compute on PC

Name NON-VON(I/3)
Company Columbia University
Stream '% MIMD/mulSIMD
CommtechU Log-state interconnect (P-P)
Commtopo Undecided (omega.buuerfly,banyan) family
Control DECENTRALIZED
Assign TBD Memory :SHARED
Synch CONDITIONAL
Max-cpu >,16K
Cpusize 8-bit SmalPEs and ?(microprocessor) LargePEs
Perform
Market General-purpose; scientific; DB; image/signal processing
Software]
Software2
Comment1 Tree-structure; Large and small PEs; smart disk control system
Comment2 N-V3 appears cancelled; Shaw and Hillyer left Columbia

Name PASM (Partitionable SIMD/MIMD)
Company Purdue University
Stream SIMD/MIMD
Commiecho Asynchronous ciiuht-switch MIN (3nets:instrsham, mem,cry 10)
Commtopo "generalized cube"
Control DECENTRALIZED
Assign DYNAMIC Memory: PRIVATE
Synch UNIVERSAL
Max-cpu 1024 (16 in prototype)
Cpu size 16 (M68010)
Perform
Market Image understand; speech recog and biomedical signal proc
Software] "PASMOS" O.S. is disibuted among PEs
Software2
Commentl Memory controllers each synchronize PEs with broadcast,
Comment2 Universal Memory synchomization

11-34

Name RP3 (Research Parallel Processor Project)
Company IBM
Stream MIMD
Commtecho circuit-switching (+ packet-switch queueing) MIN (P-M)
Commtopo Lawrie's Omega and SW Banyan (2 networks)
Control UNKNOWN
Assign DYNAMIC Memory :SHARED
Synch CONDITIONAL
Maxcpu 512
Cpu-size 32-bits
Perform 1 GIPS
Market scientific. VLSI design automation
Softwarel BSD 4.2 Unix as O.S.; C and FORTRAN
Software2
Commentl Shared memory and private mem.ory message-passing OR user mix.
Comment2 Dynarmic memory globalflocal allocation; mark data as cacheable

Name SPUR (Symbolic Processing Using RISCs)
Company University California, Berkeley
Stream MIMD
CommtechO bus (TI "NuBus")
Commtopo (PEs and shared memory linked by a single bus)
Control DECENTRALIZED
Assign TBD Memory :SHARED
Synch CONDITIONAL
Max-cpu 6-12 (genena-purpose PEs with LISP and floating point. support)
Cpu-size 40 (32 + 8 for LISP tags in 64b words) 32 for Non-LISP
Perform
Market workstation; parallel LISP
Software 1 Common LISP
Software2
Commentl 128K bytes of cache per PE, using virtual addresses.
Commeni2 38-bit global virtual addresses in 256G-byte virtual space

Name STARAN
Company LORAL (original builder = Goodyear Aerospace)
Stream SIMD
Commtecho FLIP network (within each Associative module)
Commtopo
Control UNKNOWN
Assign TBD Memory :SHARED
Synch TBS
Max-cpu 8192: 32 associative arry modules with 256 simpl ePEs each
Cpu-size 1 (256 PEs within each associative module)
Perform approx. 80Mops [Loral telephone conversation]
Market Cartography; image/signal proc;stereophotogmmnetry
Software
Software2
Commnentl Used for cartography at Defense Mapping Agency
Cormnent2

Name Systolic Adaptive Becnformer
Company ESL, Inc.
Stream MIMI)
CommtechO direct point-to-point
Commtopo
Control CENTRALIZED
Assign STATIC Memory : TBE
Synch UNIVERSAL
Max3CPU
Cpu..size 32-bit VLSI chip - floating point add/multply for complex values
Perform 350MFLOP
Market acoustic signal processing (esp. sonar)
Softwarel
Software2
Commentl Uses custom VLSI chips; input from 100 sensor channels
Comment2 Results output to VAX-I 1/75 [Kandle 1987]

11-35

Name Systolic/Cellular System
Company Hughes Research Laboratories
Stream MIMD/SIMD
CommtechO
Commtopo 16 x 16 mesh
Control CENTRALIZED
Assign STATIC Memory: THE
S h UNIVERSAL

1CPu 256
Cipu-mze 32-hit
Perform 450MOPS
Market signal processing (Faddeeva and Luk algorithms)
Softwarel
Software2
Commentl Operates in 'oellular or systolic 'modes' [Nash 1987]
Comment2 Dual-port anmy memory and PE memory

Name T-ASP (Teamed Architecture Signal Processor)
Company Motorola (Canada)
Stream S W_.D
Commtecho
Commtopo cube
Control DECENTRALIZED
Assign TBD Memory :SHARED
Synch TBS
Max-cpu 8 "fully pipelined vector processors"
Cpu size 40 bits (for complex #s)
Perform 32OMflops [Lang, et. al.1988]
Market passive and actve sonar. satellite data processing
Softwarel T-ASP OS (TOS) supports real-time mutiluser & multitask
Software2 MLP signal-processing langanguage.; debuggers, sig-proc lib, mem ed.
Commentl complex-number-format; 2 memory caches and interleaved memory
Comment2 3 controllers - arithmetic, transfer and communications

Name Tagged Token Dataflow Machine
Company MIT (Arvind Machine)
Stream MIMD
Commtech0 Shared bus (M-M); switches emulated misc INs (P-P)
Commtopo Emulates misc. INs and topologies
Control UNKNOWN
Assign DYNAMIC Memory: PRIVATE
Synch TBS
Max-cpu 32-Symbolics Corp. emula.;256-Electrotechnical Lab(Jap)
Cpu-size 32-bits
Perform
Market
Software high-level "Id" language [Srini 1986, pp. 78-9)]
Software2
Commentl Operand-dnven; dataflow machine
Comment2 Packet Communications organization; token-matching

Name TI-ASC (Advanced Scientific Computer)
Company Texas Instruments
Stream SIMD
Commtecho
Commtopo
Control UNKNOWN
Assign TBD Memory: TBE
Synch TBS
Max-cpu I

Perform 40Mflops [Hwang 1984]
Market seismic, fluid dynamics, defense
Softwarel
Software2
Comment] pipelined. memory-to-memory architecture
Comment2

11-36

Name TRAC v 1. 1 (Texas Reconfigunble Army Computer)
Company Univ. Texas, Austin
Stream SIMD/MIMD
ComrmechO 0 pa.ket(mem) and progrmmable circuit switching MIN (P-M)
Commtopo banyan (SW-fanout=3,sprad=2Jevels=2)
Control CENTRALIZED
Assign DYNAMIC Memory :SHARED
Synch UNIVERSAL
Max-cpu 4
Cpu-size 8 ("byte-sliced" microprocessor in v.1. 1)
Perform
Market
Softwarel
Software2
Commentl emph:"inductive" arch for expansion and dyna c programnning
Comment2 [Malek cony.]; most rem private; reconfigurable tree/buses

Name Utracomputer
Company New York University
Stream MIMD
Commiecho (asyn?) message-switching I VLSI) MIN (P-M)
Commtopo Omega
Control DECENTRALIZED
Assign DYNAMIC Memory :SHARED
Synch CONDITIONAL
Max-Cpu 4096
CpuLsize 16 (M68010 -cu -mtly)
Perform
Market General-purpose
Softwarel FORTRAN, C, Pascal, (LISP Prolog under development)
Software2
Commentl Emphasize shared memory with fetch and add primitive for
Comment2 synchronization and coordination

Name WARP
Company Canegie-Mellon University
Stream MIMI
Commtecho Synchronous backplane word transfer
Commtopo Nearest (left and right) neighbor
Control CENTRALIZED
Assign STATIC Memory: PRIVATE
Synch UNIVERSAL
Max-cpu 10
Cpu-size 32 bits
Perform 100Mflops (based on 10Mflops/PE - (Miller 1987]y
Market Computer vision, signal proceasing, pd-equations
Softwarel
Software2
Commentl Programmable systolic architecture; 2-way systolic flow
Comment2 DARPA project; INTEL working on single chip version

11-37

CHAPTER III: NON-VON NEUMANN APPLICATIONS ANALYSIS

3.1 INTRODUCTION

Computers that embody NvN architectures potentially offer the computational powerrequired to run
applications in the problem domains covered in this study. The classification scheme produced in
the Subtask 1, NvN Architecture Study, provides the basis for correlating NvN computers and
applications. A problem domain is analyzed by looking at the applications functioning under each
of the architecture classifications formulated in the first subtask. This analysis shows the extent each
architecture class covers in the selected problem domain.

The survey information presents a variety of applications currently running on each architecture. The
existence of an application on a computer system can be attributed to one of two factors: 1) the
architecture was designed to solve problems in that application domain, or 2) the computer was
available, so the application was transported to it. In either case, the efficiency of an application
depends upon the mapping of the algorithm to the architecture and the efforts of the application
developers.

The principal factor in determining application performance is the selected algorithms for solving
the components of a problem. An inappropriate algorithm impedes the potential of a computer more
than any other factor in assessing performance. Once an appropriate algorithm is selected, the ability
of the application developer to utilize an architecture determines the final performance characteris-
tics. This reports decomposes a problem do-nain into its major components, identifies known
algorithms for solving these components, and assesses the applicability of the algorithms to NvN
architectures.

This report summarizes the information gathered over the past few months on the capacity of NvN
computer architectures for solving problems. Section 3.2 presents an analysis of BM/C3I applica-
tions and the potential use of NvN computers in BM/C31I. Sections 3.3 to 3.7 report on the use of NvN
architectures in the problem domains of Artificial Intelligence, Real-time Simulation, Signal
Processing, Image Processing and Use in Development, Prototyping, and Test of Hardware and
Software; respectively.

The remainder of this section summarizes the five application areas that are analyzed in this report;
BM/C3I, image processing, signal processing, artificial intelligence, and real-time simulation.

3.1.1 BM/C 3I

Battle Management, Command, Control, Communications, and Intelligence (BM/C3I) Systems are
being analysed as a first step in transitioning them onto the next generation of hardware architectures.
Existing, operational BM/C3I systems, based on the traditional von Neumann machine architecture,
are hard-pressed to cope with the explosion of information that is required by command authorities

III-1

in order to successfully manage modem missile-type weapons on battlefields of global, or near-
global scope.

The challenge to the Life Cycle Support Agencies which are responsible for providing computer-
based BM/CI systems to the combat units is to determine how to apply the fruits of on-going research
and development of the new non-von Neumann machine architectures to existing and near-term
planned BM/C31 systems. If there is a single message arising from the many research and
development projecting investigating the NvN machines, it is that the BM/C3I systems of the 1990s
are going to be complex aggregates of hardware and software organized into networks of federated
clusters of perhaps all seven of the NvN architectures, operating in conjunction with machines of the
tradition von Neumann type.

3.1.2 Artificial Intelligence

Section 3.3 discusses the application area of Artificial Intelligence (AI). Specifically, it discusses the
potential for implementing production systems on NvN machines. A production system is a rule-
based program that executes in a cyclic manner (i.e., a set of conditional rules that are evaluated and
acted on iteratively). Production systems are comprised of working memory, a set of rules and a
program that evaluates the rules based on the current state of working memory. Expert systems are
production systems that contain rules derived from human experts.

The fundamental processes that comprise all production systems are initialization, data acquisition,
condition evaluation, rule selection, conflict resolution and rule firing. The critical processes that
determine performance on von Neumann computers are condition evaluation and rule firing.

Memory access and complex compare instructions limit the performance on conventional systems.
For some large real-time applications, data acquisition requires fast data input capability and data
preprocessing prior to information being stored in working memory. Response time is critical in real-
time applications and inferences must be made in a short time frame.

Memory subsystem speed is likely to be the critical factor in determining the performance of a
production system, because matching production preconditions to the current working memories
contents consumes the vast majority of compute time. This implies a NvN architecture that balances
memory access and conditional evaluation. This aspect has encouraged approaches using both
associative memory processors and subtrees of low capacity processors with private memory.
Present research suggests that several NvN architecture types can be efficiently exploited for parallel
production system execution.

3.1.3 Real-time Simulation

Section 3.4 analyzes the application area of real-time simulation by looking in depth at a specific
problem pertinent to Air Defense Initiative (ADD. The ADI Technical Evaluation Facility (TEF)

111-2

models the North American Air Defense environment and provides for interaction between
simulated real world objects and the simulated effects. This model is complex and contains
characteristics found in most real-time simulations. The ADI TEF simulation is comprised of several
separate models that are controlled by and communicate through a simulator executive. The TEF
executive is a hybrid that combines event stepped simulation with time stepped simulation, thereby
providing a centrally controlled discrete event simulation with an underlying selectable time period.

The simulator executive is the key to a successful simulation, and therefore, it should be carefully
designed with particular attention given to simulation efficiency and repeatability. For this simula-
tion 10 to 18 minutes is acceptable turnaround time for simulating eleven one-hour time intervals.
Examination of the most compute-intensive model revealed processing requirements in excess of 67
MIPS on a von Neumann computer. Moreover, the computer system needs access to over 33 MBytes
of real memory and over 2 GBytes of on-line data storage. The large amount of data access and data
movement characterizes most simulation applications.

Each of the individual models for object motion, sensor detection or environmental calculations are
possible subjects for parallel processing. The calculations performed are identical for all objects of
the same category and simultaneous evaluation offers the potential for greatly increased efficiency.
For the simulation executive, feasible parallel execution might be the distribution of functions,
provided the simulation is repeatable (i.e., executing the simulation with the same input parameters
and data result in identical output data). A large grain parallel architecture provides the best choice
for the control architecture, with each large processor having the ability to execute fine-grained
parallel calculations, such as vector or array processing.

3.1.4 Signal Processng

Signal processing is the application of algorithms to sampled data from single or multiple sensors for
the purpose of extracting intelligence from the data and/or improving the quality of intelligence that
may be extracted. Signal processing techniques are applied to many types of signals including:
telecommunication, radar, video images, acoustic, seismic, and medical instrumentation.

The processing algorithms are applied for a variety of purposes, such as improvement of signal-to
noise ratio, speech recognition/speech compression, detection of events, pattern recognition,
parameter measurement, and image processing.

The most pervasive problem of signal processing is its computational intensity. In some cases
relatively high 1/0 bandwidths are also required, but computational bandwidth is the predominant
problem.

The problem of high data rates from a large number of sensors is exacerbated by the additional
requirement for high precision computation when using the more sophisticated processing algo-
rithms. Advances in signal processing over the past three decades have brought increasing

I11-3

complexity of the algorithms, ranging from filtering to spectral analysis to adaptive beamforming.
These changes in algorithmic complexity have altered the computational load from a factor of N to
a factor of N2 to a factor of N3 (where N is the number of data samples to be processed in a given time
period). In most signal processing applications, the processing load must be handled in real-time.

A common and significant attribute of most signal processing applications is the use of complex
mathematical techniques such as FFT (fast Fourier transform), IIR (infinite impulse response)
filtering, FIR (finite impulse response) filtering, and matrix operations. This algorithmic common-
ality makes it feasible in many instances to select or to design a system architecture that is suitable
for multiple signal processing applications.

Non-von Neumann architectures are already in use in most of the signal processii-, applications
where computational bandwidth requirements indicate the need and where cost allows. Numerous
pipelined array processors (not to be confused with processor arrays) of the class 1 type have been
commercially available as peripherals to mainframe computers, and have been applied to many
signal processing applications since the early 1970s.

Adaptive beamforming in radar, sonar, and seismic applications has been performed using rhythmic
cellular architectures as well as processor array type architectures. Target tracking applications have
also been performed on associative processor architectures. Processor arrays have also been applied
to speech and image processing. Various multiple processing element (PE) architectures have been
applied to general signal processing, including the application of expert systems technology to signal
analysis.

3.1.5 Image Processing

Image processing has been defined in term: -f two categories of processing by S.Y. Kung in his book
VLSI Array Processors [Kung1988]. The research activities dealing with images are divided into
two disciplines: image processing and image analysis. Image processing consists of enhancement,
restoration, reconstruction and coding, etc. Image analysis, on the other hand, deals with extraction
of lines, curves, and regions in images, classification of objects, texture analysis, analysis of moving
objects, and scene analysis. Most image processing tasks are very time consuming. For example,
low-level operations, such as filtering or enhancement, typically require on the order of some tens
of machine instructions per pixel. A typical image obtained from a LANDSAT earth resources
satellite is about 1000 x 1000 pixels/image. This implies a computation requirement of some tens
of millions of instructions per image, not including the computation for any substantive higher-level
processing. If such simple low-level operations are to be performed at a video rate, say 25 to 30
frames per second, this means a throughput requirement of about a billion instructions per second.
In general, most real-time image processing throughput rates outstrip current parallel architectures.
Thus image applications processing has long been (and will continue to be) a major driving force in
the development of faster and more powerful parallel machines.

111-4

3.1.6 General Purpose Use of NvN Machines

Section 3.7 examines the use of NvN architectures for software engineering, from the viewpoint of
development, prototyping, and testing of hardware and software and from the perspective of problem
domains for which NvN architectures are applicable.

3.2 BATiTLE MANAGEMENT/C31 APPLICATIONS

3.2.1 Generic Definition of BM/C31

At a top-level, Battle Management/Command, Control, Communications and Intelligence (BM/C31)
can be defined as a set of coordinated personnel- and technology-based activities by which a
command authority can apply assigned military resources such that the military goals/objectives
levied by higher authorities can be achieved in an optimal fashion. A typical set of coordinated
activities that make up BM/C3I is given in the following 22-item list:

* logistics planning for military resource elements
* mission planning for offensive and defensive forces
* maintaining status of forces data (own force and enemy)
* maintaining order of battle data (own force and enemy)
* providing network and point-to-point communications with subordinate units, lateral

commands, and higher authorities
* intelligence data gathering
* intelligence data fusion
* disseminating fused intelligence data to command posts
* sensor data acquistition
* multi-sensor correlation
* threat identification, classification, and evaluation
• threat movement tracking
* matching weapon characteristics to target attributes
* weapon assignment
* weapon deployment
• weapon kill evaluation
* maintaining battle area environment information
* maintaining topographical data for battle areas
* large-scale display of topographical data annotated with situation data
* military situation assessment
* support for command decision-making
* preparing and distributing operations orders

During the past decade, the term Battle Management has been used as a modifier of, or sometimes
as a replacement for, the older tern, "Command, Control and Communications". Certainly, a

111-5

command authority has always managed, or has attempted to manage, the course of battle. However,
with the advent of high-speed aircraft and missile-type weapons that can be launched from ground,
air, ocean surface, or submarine platforms the scope of the battlefield has enlarged enormously, and
the temporal pace of battle has speeded up considerably. The amount of data and information that
a commander must acquire and assimilate in order to make cogent decisions regarding his use of his
military resources has increased by several orders of magnitude. The commander can no longer rely
on his intuitions borne of his prior experiences in battle; he must rely on a complex network of
communications to learn who the enemy is, how he is armed, where he is, and his most likely next
attempt to gain the advantage.

The significantly altered scope and pace of modem battle mandates the existence of a powerful
battery of computers to store, retrieve, and manipulate the great volumes of data the commander must
have if he is to successfully manage the battlefield and emerge as victor from the fray. The term
"Battle Management" has come to denote the high-speed, computer-based, large-scale information
management that characterizes modem command and control of military resources.

3.2.2 BM/C 31 Problems

Effective planning, directing and controlling of offensive and defensive forces in large-scale battles
conducted over very broad geographical a-res requires ready access to both rapidly-changing
information and to information that is basically non-volatile, and an ability to quickly correlate
elements of both types of information.

Modern, high-speed, missile-oriented battles can be managed more effectively with modem, high-
speed computers that have been made to be intelligent to the extent that they embed a large proportion
of the knowledge that has been gained by commanders and their staffs in planning, conducting, and
evaluating previous battles.

The problems confronting a BM/C31 command authority are precisely those of making the supporting
computer complexes efficient and intelligent.

Some of the information processing problems, particularly those related to the acquisition, analysis,
and interpretation of sensor signals, and the processing of image data, as well as those related to
augmenting the intelligence of the BM/C 3I algorithms, are discussed at some length in other major
sections of this report. Table 3-1 relates the typical military tasks given above to generic data
processing or computational tasks. The table is presented here as a conceptual aid; it is simpler to
relate generic data processing and computational tasks to NvN architectures than it is to relate
specifically military tasks to those architectures.

IU1-6

Table 3-1. Matching Military Tasks to Computational Tasks

BM/C3I Military Tasks Data Processing/Computation Tasks
logistics planning large database data processing
status of forces large database data processing
order of battle large database data processing
communications managing network traffic and security
intelligence gathering image and signal processing
intelligence fusion combined text and image processing
intelligence dissemination data processing, communications
sensor data acquisition signal processing
multi-sensor correlation high-speed computation, pattern

recognition, expert systems
threat identification real-time pattern recognition
threat classification database, numeric and expert systems
threat evaluation expert systems
threat tracking real-time data processing
weapons selection real-time data processing
weapons assignment real-time data processing
weapons deployment real-time data processing, communications
weapons kill evaluation pattern recognition, communications,

high-speed computation
managing topographical data image data compression/decompression

large database processing
displaying topographical data large-scale graphics
decision-making support expert system-based forecasting models
mission planning data processing, expert systems
preparing operations orders data processing, expert systems
distributing operations orders data processing, communications

The performance of data processing and/or computational tasks in a BM/CI arena are problematic
primarily because of:

* temporal (real-time or near-real-time) constraints

* the size and scope of the different databases

* the large amount of human knowledge that should be embedded in an intelligent
system

" the distribution of functions across geographically dispersed operations and control
centers.

Table 3-2 identifies the classes of software that have been used to support BM/C3I tasks within the
framework of the traditional von Neumann architecture. With the application of NvN architectures
to some of the tasks there emerges the added, new problem of creating system software for the new
architectures as well as application software.

111-7

Table 3-2. Classes of Software to Support Military Tasks

large database data processing
data processing
real-time data processing
high-speed, large-scale computation
network access
network management and control
network security control
image processing
signal processing
pattern recognition
text and image processing
graphical data compression and decompression
large graphical database management
large-scale graphics generation and display
expert systems
message processing

The software class titles, given in Table 3-2, are defined as:

(1) Large database data processing-The update, storage, and retrieval of data stored in large-scale
media devices. This activity will not usually be performed under real-time or other severe timing
constraints. The scope of the databases will be such that a DBMS will be used to interface the BM/
C3I algorithms to the data.

(2) Data Processing -The update and retrieval of data from either high-speed or regular storage.
This activity will not usually be performed under real-time or other severe timing constraints. Some
instances of this activity will make use of a DBMS, while other instances may not require a DBMS
because of the small-scale of the data structures holding the data.

(3) Real-Time Data Processing-The update and retrieval of data and/or information in high-speed
storage that must be executed in real-time, and will not make use of a DBMS. A typical example of
this kind of processing is the detection, classification, evaluation and tracking of threat objects, and
the subsequent weapon selection and assignment and deployment.

(4) High-Speed, Large-Scale Computation-The application of complex algorithms to a body of
data. This complexity forces extensive use of hardware features such as pipelined vector manipu-
lation. A typical example is multisensor correlation.

(5) Network Access-This class of software provides for the placement of data onto, and the retrieval
of data from, the communications medium through which messages will be sent to or received from
other nodes in a local area network, or a wide-area network. The key attributes of this software class
are robustness and efficiency. Although this class of software is considered to be a support function,
its efficiency is vital to the successful performance of military tasks.

111-8

(6) Network Management and Control-This class of software assures the on-going reliability of
the communications capability that enables easy and rapid inter-nodal communication of battle-
sensitive data.

(7) Network Security and Control-this class of software assures that all classifed and/or otherwise
sensitive information is handled properly.

(8) Image Processing-The manipulation of images. It is expected that construction, enhancement,
and analysis of image data will be performed in an ancillary facility (off-line or detached). Image
data can be a considerable support to a command authority in the assimilation of other types of
information. Image processing is discussed in the enabling technologies section (Section V) of this
report.

(9) Signal Processing-The acquisition, reduction, and analysis of signals from radar or electro-
optic sensors. Signal processing is discussed at length in Chapter III of this report.

(10) Pattern Recognition-This permits analysis of signals data and/or image data to precisely
identify one or more sensed objects. It enables and supports the making of good command and
control decisions.

(11) Text and Image Processing-The merging of text and image data in a single file supports more
rapid assimilation of complex intelligence information by commanders and their staff personnel.

(12) Graphical Data Compression and Decompression-This makes use of algorithms that can
significantly reduce the amount of storage required for image data. This function is often
implemented in hardware.

(13) Large Graphical Database Management-This software manages topographical and other types
of image information and supports querying as well as updating.

(14) Large Scale Graphics Generation and Display-This software works in conjunction with that
mentioned in the previous item to retrieve graphical and image data and generates displays of the
information on a large screen device. This capability supports the rapid assimilation of military
situation data by the commander and his staff.

(15) Expert Systems-This is knowledge-based software that embeds the military expertise of
commanders and their staff personnel, This type of software as-ist.q the commander in making good
command and control decisions quickly.

(16) Message Processing-This software takes messages that have been received from other
operations and control center nodes and parses the messages and presents them for appropriate
display to the center staff personnel.

111-9

The Subsection 3.2.4, following, of this BM/C3I section discusses the typical classes of software and
identifies those classes for which there is some likelihood that performance can be improved by
applying one or more instances of NvN architectures.

3.2.3 Use of NvN Architectures in BM/C31I Applications

Outside certain large-scale test beds, and various Government and industrial research and develop-
ment laboratories, there is no known usage of NvN architecture machines to existing BM/C3I
command computer complexes. There may exist a BM/C31 command computer complex in which
NvN machines have been installed to support the mission of that command, but such information has
not been available for this task report. RADC is currently managing a contract to define and
implement BM/C3I algorithms, using the Center's algorithm testbed.

3.2.3.1 An Object-Oriented Perspective of BM/C3I Systems

For the purposes of discussing the management of data and information, a BM/C31 system can be
viewed as a set of six interacting information management objects (Figures 3-1 and 3-2). This object-
oriented perspective can be a good conceptual aid in decomposing BM/C 31 functions preparatory to
allocating them to NvN architectures.

OBSERVED OBJECTS

EINTELLIGENCE

COMMUNICATIONS

SURVEIILLANCE)
FORCES)

Figure 3-1. The Primary Management Objects of a BM/C31 System

III-10

" Surveillance [SURV] Manager-provides location information on observed objects

* Intelligence [INTEL] Manager-provides fused current intelligence to command posts

" Force [FORCES] Manager--manages and controls all information about military
resources

* Threat [THREAT] Manager-provides current status of observed hostile objects,
provides Weapon Threat Analysis services, and monitors own-force-launched weapons,
as well as enemy -launched weapons

* Observed._Objects [OOBJ] Manager-provides descriptive information on observed

objects and provides tracking status on observed objects that are moving

• Communications [COMM] Manager-provides for reliable message delivery.

The SURV Manager, through its sensor suites, acquires and distributes location information for
objects in its environment.

The INTEL Manager provides fused intelligence information to the various Command Posts in the
BM/C31 system. Intelligence information is used to update Operations Plans, Logistic Plans, Enemy
Order of Battle Summaries, own-force defended assets status and maintenance of inventories,
enemy-force defended assets status, and to support current situation assessment.

The FORCES Manager provides for maintenance and control over Status of Forces data (both own-
force and enemy), Environment data, Order-of-Battle data, and for the generation and distribution
of Operations Plans and Logistics Plans. Status of Forces data includes current inventory status and
readiness status of weapons, accountable equipment, expendable supplies, and personnel.

The THREAT Manager maintains current status information on all tracked objects that have been
classified as hostile. It also provides for the generation and dissemination/distribution of weapons
directives/orders; for the maintenance of status information on en route weapons launched by Own
Forces; and for the generation and distribution of weapon kill evaluation reports.

The OOBJ Manager provides descriptive information for all stationary and moving objects (own-
force and enemy) within the purview of th= Surveillance Manager. OOBJ also provides tracking data
and track histories for all moving objects in the environment of its sensor suite(s).

COMM provides a reliable message delivery service to the other five primary functional objects.

The five top-level objects are made up of sub-objects that provide the top-level objects' characteristic
functionality. The sub-objects of the primary objects are identified as follows:

IIl-li

accePt-scan- sesdata
directives distribution

INTELLIGENCE OBSERVED OBJECTS

accepmsg

InventorIUNroceIONn sendjnsg updte eato

datanagenyenL

serseisor oddea

Fiue32 TePiay CIMngement Obet n hi ucinltyrrtto

servicesIorder

SURV Manager: acceptscandirectives, beamforming-and illumination,

returns-processing, data-distribution.

INTEL Manager: data-gathering, data-analysis, data fusion, data distribution.

FORCES Manager: planning-support, plan distribution, situation-assessment support,
situation-display, decision-support, inventory-management,
environmentdatamanagement, environment_data_presentation,
orderofbattledata-management,
topographical-datamanagement, operations_orders generation,
distribution_oforders/directives.

THREAT Manager: threatstatus datamanagement, threat_assessment,
weapon-selection, weapon-order-generation,
weapon-order distribution,
en_routeweaponstatusdata_management,
interpretation of_sensor data, weaponkillevaluation,
weapon_ kill_evaluation report-generationand_distributil.

OOBJ Manager: object description-and-statusdata-management, track-histories,
trackstatus_datamanagement.

1. Specifying Functionality of Primary BM/CI Objects

In the following paragraphs, the functionality of the subobjects is specified using applicative-
language constructs.

The purpose and primary responsibility of the SURV object is the activity:
ProvideSensorSurveillance_of_Environment. The primary function of SURV is defined in terms
of four subsidiary functions.

(Provide SensorSurveillenceofEnvironment) ==
(DistributeObjectLocationData

(ProcessjIlluminationReturns_Data
(FormBeams_andIlluminateEnvironmentSectors

(AcceptSector_ScanDirective
[sectorJata-request]$

The above construct indicates sequentiality of operations. The first functional operation is the
innermost function. For example, in the above construct the Accept-Sector_ScanDirective
operates to accept whatever request data has been prepared by or on behalf of users. The $ closes
all unmatched left parentheses.

IHI-13

The INTEL object is responsible for the activity
Providejntelligence_information_to_Command Posts. This primary function is defined in terms

of four subsidiary functions, as follows:

(Provide_IntelligenceInformationtoCommandPosts)==
(Distribute_FusedIntelligence

(Correlate_and_Fuse_Data
(AnalyseGathered_ntelligenceData

(GatherIntelligenceData [data-sourcesoutput]$

The THREAT object is responsible for the activity EvaluateandRespondtoHostileObjects. An
alternative format for the subsidiary functions is shown in the following construct. In this case the
first operation is the first one in the list of functions.

(Evaluate_and_RespondtoHostileObjects)==
(Receive_TrackDatafromOOBJ);
(AssessThreat) ;

(MaintainThreatStatus) I
(WeaponTarget_Analysis/WeaponSelection-andAssignment) I

(Maintain_LaunchedWeaponStatus);
(Evaluate_LaunchedWeaponEffect);
(GenerateWeaponKillEvaluationReport);
(Distribute_Kill_EvaluationReport) $

This alternative form illustrates that the two sub-activities of AssessThreat can be performed in
parallel. Each parenthesized function set is followed by a vertical bar; the bar indicates that these
activities can be performed in parallel.

The OOBJ is responsible for the activity:

(MaintainDescription-andLocationData forObjects-In Environment)==
(AcceptSensorData [SURVoutput]);
(IdentifyandClassifyObjects);
(MaintainObjec tDescription-andS tatus_Data);
(Maintain_ActiveTracksandTrackHistory);
(DispatchData toOtherObjects) $

The scope of functionality responsibility of the FORCES object is considerably broader that that of
the other objects; consequently, it is necessary to use at least one additional level of abstraction in
specifying the top-level functionality. The FORCES object executes the top-level activity
MarnageForces. This top-level activity can be defined in terms of six second-level activities, as
shown in the following construct:

11-14

(ManageForces)==
(Support-Comimand-and_Sraff..lanning..Activities) I
(Support-Command-Decision_Making) I
(Manage-Equipment/Supplies/Personnel Inventories)I
(SupportOrders/DirectivesGeneration/Distribution_Activities) I
(Provide-DatabaseManagement Services) I
(Provide-Message..Procesing _..Services)$

The first function in the above list can be further decomposed, as shown below:

(Support Command~and_StaffPlanningActivities)==
(generate-operations,_.plan(s)) I
(generate logistics..plan(s)) I
(generate-database..queries);
(receive database...queryjresponse(s))$

This construct shows the two topmost activities can be performed in parallel, but that if either of the
topmost function generates a database query, then the receive the results of that query must follow-
it can not be done in parallel with the generate query function.

(Support Command_DecisionMaking)==
(assess newjintelligence~data);
(situation-assessment);
(assess-stateofgoal achievment);
(graphic sgeneration);
(situation-display);
(decision support..aids);
(generate-database..queries);
(receive-database queryjesponse(s));
(generate orders/directives) I
(dispatch...orders/directives)$

(Support-Qrders/Directives-GenerationjDistribution_-Activities)==
(accept-incoming..message(s));
(retrieve -order/directive-template(s));
(complete..order/directive _template(s));
(generate-message-equest(s));
(dispatch-jnessage-equest(s));
(generate-database..queries);
(receive-database-query-esponses(s))$

111-15

(Provide-Database...Management Services)==
[Environment -Database] I
[Order -ofBattle_Database] I
[Topographical-Database] I

(accept..database-transactions/queries);
(parse _received_transactions/queries);
(retrieve requesteddata) I
(write-new...data) I
(update...existing-data) I
(delete existing..data) I
(generate-database-usagejreports);
(dispatch jetrieved_data);
(distribute reports)$

The above construct shows that the functions whose names are indented might be performed on each
database named.

(Provide -MessageProcessingSerices)==
((accept-message-requests);
(generate-messagejforjransmission)) I
((acceptjinconiing-messages);
(parse-incoming..messages)) I
(prepare-outgoin g-jes sages);
(transnmit-outgoing-messages)$

(ManageEnvironmentDatabase)==
((AcceptSensor-Data) I
(AcceptHumanObserver -Data));
(Interpret Sensor Data);
((UpdateEnvironment_Database) I
(AcceptRequests forEnvironment-Data));
(DispatchEnvironmentData)$

(Manage-.Equipment/S upplies/Personnel Inventories)==
(ManagePersonnel Inventories) I
(ManageAccountable Equipment-Inventories) I
(Manage-ExpendableS upplies-Inventories) I
(Manage-Weapons-andArmamentsInventories)$

111-16

2. Identification of Maior Databases in BMIC3I Systems

The FORCES and INTEL objects have the most complex as well as the most comprehensive database
requirements of all the primary functional objects in a BM/CI command center.

In order to reduce the complexity of the vast set of complicated data interrelationships among the
various databases of the FORCES and INTEL functions there should exist a capability to define
hierarchies and lattices of complex objects. A complex object can be made up of a set of simple
objects, one or more simple objects combined with other complex objects, or a set of other complex
objects.

In creating the BM/C3I systems of the 1990s (based on hardware aggregates), the conceptualization
and design tasks would be simplified if the database areas associated with the FORCES and INTEL
functions were restructured into an object orientation. The higher-level categories of data objects in
these functional areas are identified in the following paragraphs.

a. Force Management Databases

The databases necessary to support the management of forces include the following:

Planning Data
Operations Plans, Logistics Plans [multi-media documents]

Inventory Management and Control
Personnel Resources

Accountable Equipment
Aircraft, Trucks, Tanks, Weapons Launchers, Sensor Systems, Computers, Radio
Receivers, Radio Transmitters, Modems

Expendable Supplies
Foodstuffs, POL Products (Gasoline, Jet Engine Fuel, etc.), Ammunition (Small
Arms, Artillery, Bombs, Missiles, Rockets), Paper Products

Status of Forces
Unit Personnel Strength, Readiness Status, Training Status, Equipment Status
(Aircraft, Trucks, etc.)

Order of Battle
Own Forces, Enemy Forces

Topographical and Image Data
Maps, Photographs, Drawings, Machine-Generated Graphics

111-17

Environment Data
Current Conditions, Predicted Conditions (for entire battle area by grid cell)
Events Having Environmental Impact (i.e. NUDETS) (for all affected grid cells)

Knowledge Base (Expertibe of Personnel)
Human Knowledge about C2, Comm, Intel, Battle Management, Military Psychology,
Planning, Decision-Making, etc. (Much of the Knowledge Base will be made up of
symbolic data)

b. Intelligence Databases

The INTEL databases include the following:

Enemy Order of Battle (persons, personalities, modii operandi, unit identification, unit
strength, unit training/readiness, etc.)

Status of Enemy Defended Assets

Status of Own Force Defended Assets

In order to be maximally supportive of the Command and Control of military resources, the various
databases and data sets that are incorporated into the INTEL object should be based on multi-media
capabilities, such as text combined with photographic images, maps, drawings, and/or video images.

3.2.4 Projected Future Use of NvN Architectures in BM/C3I Applications

3.2.4.1 Large Database Data Processing

BM/C31 operations and control centers use several different large databases. In general, Class VI
machines (GPMPE) would be good hosts for large databases since a database could be distributed
across multiple storage devices, with each device being controlled by one of the processors. In
addition, it should be possible to improve performance of some classes of database searches with
NvN Class IV (Associative Array Processor) machines.

3.2.4.2 Data Processing

This type of activity will usually be oriented to accessing data in primary high-speed storage. Some
particular processing algorithms might be parallelized; however, it is difficult to make a general
statement about the applicability of NvN architecture machines.

111-18

3.2.4.3 Real-Time Data Processing

The typical application-identifying, classifying, and evaluating threat objects, and the follow-on
task of selecting an appropriate weapon-is a likely candidate for Class VI machines (General
Purpose, Multiple-PE Architecture) ([Gottschalk 1987] and [Baillie, Gottschalk and Kolawa 1987]).

3.2.4.4 High-Speed, Large-Scale Computation

A Class I machine (Pipelined Vector Uniprocessor) would most likely be the best fit. The primary
processing host in a BM/C3I command node aggregate could well be a Class I machine.

3.2.4.5 Network Access

This is one of the primary support activities for the basic BM/CI tasks; this function is usually located

in a bus interface processor. The set of bus interface processors within a local area network could,
in a sense, be viewed as a Class VI.1.1 machine (Bus Connected, General Purpose, Multiple-PE
Architecture).

3.2.4.6 Network Management and Control

This is a second element of the communications support capability for the basic BM/C31 tasks. This
function is often located in a separate processor rather than in the primary processor.

3.2.4.7 Network Security Control

This is a third major element of the communications support capability. Managing a comprehensive
multi-level access control list, could be simplified with a Class IV (Associative Array processor)
machine that is attached to a traditional von Neumann (TvN) processor within a processing
a,6regate.

3.2.4.8 Image Processing

The current state of image processing technology supports the processing of digitized photographs;
this capability could be very useful to the intelligence gathering, fusion and dissemination activities
that provide fused intelligence information to BM/C3I command authorities. Several of the NvN
classes could be applied to such image processing (refer to the enabling technologies section of this
report)

3.2.4.9 Signal Processing

The needs of the signal processing community have supplied much of the impetus in developing
systolic array and wavefront processors over the past decade. Both types are directly applicable to
BM/C3I sensor data acquisition and analysis [Korelsky, et. al. 19881.

in1-19

3.2.4.10 Pattern Recognition

This is an aspect of computer vision and other image processing activities. It is useful in analyzing
sensor data and photographic images to determine the presence or absence of particularobjects. This
technology is quite applicable to threat identification and threat evaluation. NvN architectures have
been rather heavily used in pattern recognition research tasks [Ahuja and Swamy 1984].

3.2.4.11 Text and Image Processing

The previous three paragraphs all apply to the creation of single files containing interspersed textual
matter and image data (photographic, topographical maps, line drawings, et cetera). Fused
intelligence information will probably be disseminated in such form; this information can be
displayed to support command decision-making or can be used to update one or more databases.

3.2.4.12 Graphical Data Compression and Decompression

This technology could be applied to image data to reduce the amount of storage required. There exist
both software and hardware implementations of the compression/decompression algorithms. This
is an indirect advantage to a BM/C3I command computer complex. This technology could be applied
whether the machine holding the image data were attached to a TvN or an NvN machine.

3.2.4.13 Large Graphical Database Management

A general statement cannot be made with respect to the applicability of NvN architectures to this
important task. However, it is likely that different databases could each be managed by separate
processors of a parallel architecture machine.

3.2.4.14 Large-Scale Graphics Generation and Display

This is a companion task to the previous task. It is likely that a large-screen display device would
be an attached assembly to the primary processor.

3.2.4.15 Expert Systems

This technology is applicable to the majority of the tasks discussed in this subsection of the report.
The most obvious application is to the task of supporting command decision-making. It has been
successfully applied to pattern recognition and image scene analysis tasks. The field of expert
database systems is currently an important research area; the knowledge gained from the many
research projects could prove of great benefit to the BM/C3 community. It is difficult to make a
general statement about the applicability of NvN architectures. The majority of extant expert systems
were designed as standalone systems, but there is currently considerable activity in designing expert
systems that are embedded into other information systems. The fruits of this activity will, no doubt,
indicate how the various NvN architectures might be applied to the BM/C3I arena.

111-20

3.2.4.16 Message Processing

It is conceivable that with a Class VI machine (Multiple-PE architecture), separate processing
elements could be assigned to the processing of different types of messages. In addition, expert
systems technology could be an integral part of the message processing function.

3.2.5 The SDS Battle Management/Fire Control Functions for Space Based Processing

The previous subsections treated BM/C3I functionality in a generic fashion. In this section a
particular subset of BM/C31I functionality is discussed; specifically, the system operations and
integration functions of the SDS Battle Management/Fire Control Functions for Space-Based
Processing.

The processor sizing estimates given here for the SDS Space-Based Battle Manager represent a first
step toward characterizing the algorithms of an existing BM/C3I system leading, in the next step, to
an analysis of parallelizability and the mapping of parallel algorithms and algorithm segments onto
particular NvN architectures.

These processing estimates assume decoupled boost post-boost engagement from mid-course
engagement. The Space Based Interceptor (SBI) Constellations are being controlled by SAKTA
Platform-based battle managers. The functions included here are those associated with system
operation and integration only; signal processing and communications processing are not included.

Within the signal processing capabilities of each sensor, scan-to-scan correlations are made. Each
sensor outputs angle data with correlations to previous scans. The functions discussed and sized here
take such correlated data, perform track initiation in boost phase, use multi-sensor BSTS data to
propagate tracks through boost phase, associate SSTS data in late boost phase and use SSTS sensors
for PBV tracking. In addition, it is assumed that SSTS sensors will be used also to track interceptors
flying out from SBI platforms.

This section discusses all the SIOP functions associated with boost and post-boost phase engage-
ments. It is assumed that these functions are being performed by each appropriate SATKA platform
implicitly, and that messages are sent to assigned SBIs by selected platforms.

It is difficult to estimate the processing functions because different functions independently make
assumptions of worst-case loading. In addition, because the functions might be partitioned to
different processor elements it is not clear that the worst case processing load actually occurs when
the total processing reaches a maximum. The estimates given here are based on heavy loading for
each of the functions. If actual parameter values were used here, this report would have to be
classified. Assuming the review and discussion will be conducted in a non-classified mode, we make
use of parameter values that are accurate enough, but which avoids a necessity for classification. The
parameters are identified in Table 3-3.

11-21

Table 3-3. Parameters Used in BM/C31 System Sizing

I Number of interceptors in flight
M Missiles launched in a three-minute period
W Number of weapon platforms in constellation
A ASATs launched in the same three-minute period
S Number of sensor platforms performing computations

Ta Assignment time
Ts Sensor scan time
Tf Fire control update period

Assuming a very heavy mass raid in which the number of missiles launched in a three-minute period
may vary from 500 to 2000, the number of interceptors launched from SBI platforms is given by the
following formula:

(interceptors-launched .LTE. ([(# platformsinthe_battle) * 20%]* 15))

The number of SBI weapon platforms in the constellation is of the order of a few hundred, say 300.
Of these few hundred about 20% may be in the battle, and each of this 20% may be attacked by, say,
three ASATs. The number of sensor platforms is likely to be fewer than thirty. Many weapon-to-
target assignments take ten seconds. The scan time depends upon the sensor and will be less than
ten seconds; a good nominal value is five seconds. The fire control update rate is between five and
thirty seconds. An estimate of the number of computations to be performed is given in Table 3-4.

Table 3-4. Estimates of the Number of Computations per Function

Repeat
Number of Computations Every X Can be

Functions (1000s of Operations) Seconds Parallelized

Sensor/Comm Assignments O+2*S+0.5*(M+A)+.1*I 30 yes
Statusing 5+0.1 *(W+S) 60
Weapon Update 1+2*W 30

Sensor Processing
Receive Data/Validate 0.15*(M+A+I) Ts yes
Correlate 0.3*(M+A+I) Ts
Track Initiate 0.6*(M+A) Ts
Track Propagate 2*(M+A)+0.8*1 Ts
Type Discriminate 0.1 *(M+A) Ts

Weapon Target Assignment
Engagement Opportunities 3*A+.2*(M+A)*2*W*(M+A) Ts not easy
Optimization 1.2*(M+A)*W*0.8*(M+A) Ta

Fire Control
Engageability 1000*(0.05)*(M+A) Ta
In Flight Analysis/Homing View 1.2*1 Tf

111-22

The first column of Table 3-4 names the functions; the second column contains algebraic formulae
for deriving the number of computations; the third column gives the repetition rate for each function;
the fourth and last column indicates whether a function's algorithms can be reexpressed in a parallel
form to take advantage of NvN parallel architectures. To obtain an estimate of the number of
computations per second, divide the results yielded by the formula in column two by the factor (either
a numerical value or a parameter identifier) in column three. In general, those formulae that contain
terms that sum the parameters "M" and "A" can be parallelized into separate passes for each missile
and each ASAT. Algorithm optimization is a major exception to this general rule, however.
Similarly, terms containing the parameter "I" are candidates for parallelization.

Estimates of the sizes of the databases used by these functions are given in Table 3-5. The first column
identifies the databases; the second column gives a unit-size estimate; the third column gives the
database update rate (either a numerical value or a parameter identifier); the fourth column identifies
the functions that access the database; the final column indicates whether the functions read, write,
or read and write the database. Key concerns in using an NvN architecture for a BM/C31 system are
the matching functions and the data upon which they operate. For example, the sensor and weapon
status tables, the track file, and the interceptor files all must be protected in nonvolatile memories.

Table 3-5. Database Size Estimates and Usage Identification

Update
Every

Database Size X Sec Used By Activity

Sensor Status 200 Bytes/Sensor 60 Sensor/Comm Asgts (R,W)
Statusing (R,W)
Receive Data/Validate (R)

Weapon Status 400 Bytes/Weapon 30 Weapon Status (RW)
Weapon Updates (R,W)
Engagement Opportunities (R)

Track File 320 Bytes/ Ts Receive Data/Validate (R)
Missile & ASAT Correlate (R)

Track Inititate (R,W)
Track Propagate (R,W)
Type/Discriminate (R,W)
Engagement Opportunities (R)
All Fire Control (R)

Interceptor 400 Bytes/Interceptor Ts All Fire Control (R,W)
Track Propagate (R,W)
Corelate (R)

Sensor Data 3(40 Bytes) * Ta Receive Data (R)
Buffer (M + A + 1) Track Inititiate (R)

Track Propagate (R)
Correlate (R)

WTA Working 300 KBytes Engagement Opportunities (W)
Store Tree Optimization (R,W)

III-23

3.2.6 What BM/C31 Systems Will Look Like in the 1990s

The CSC Team's investigations to date have not revealed any examples of NvN architectures applied
to existing and operational BM/CI systems. However, the literature indicates a substantial amount
of research and development experimentation with NvN machines for several of the typical data
processing/computational tasks that characterize BM/C 31 systems.

The May/June 1988 issue of Defense Computing contains an article that discusses the nextgenera-
tion of architectures for Electronic Warfare systems [Seals 1988]. The gist of this article is that EW
systems of the future will incorporate a variety of architectures because no single architecture can
efficiently handle all the technical problems. It seems reasonable to assert that we can extrapolate
from EW systems to the larger context of BM/C3I systems in general and say that BM/C'1 systems,
at least in the 1990s time frame, will be comprised of networks of federated clusters of processors
that are likely to be instances of virtually all the NvN architectures, operating in conjunction with
traditional von Neurmann machines.

Particularly within the context of distributed BM/C3I systems, it seems unlikely that NvN machines
will stand alone as hosts for complete BM/C3I applications. It is much more likely that they will be
key components of complex hardware aggregates made up of NvN, TvN, and possibly even analog
machines. BM/C31I system requirements, in general, are complex enough that separate, large-scale
application programs, such as those for FORCE management, are likely be implemented on the
hardware aggregates and not on single machines, whether NvN or TvN.

Assuming the continuation of current Air Force doctrine, it is likely that the BM/C31I systems of the
1990s will be implemented on local area networks (LANs), with the nodes of the LANs likely to be
the complex aggregates of machines mentioned above. Although NvN machines embedded within
LAN nodes offer faster or more efficient computation of some BM/C3I algorithms, the price paid
for better speed or efficiency is increased complexity in manipulating data passed between the
various types of machines within any particular computational aggregate.

3.3 ARTIFICIAL INTELLIGENCE

3.3.1 Introduction

3.3.1.1 Overview of Artificial Intelligence Production Systems

Artificial Intelligence (AI) production systems are rule-based programs that execute in a iterative
manner. The principal components of a Production System (PS) are:

" a working memory (WM) that constitutes a data base for the system,

* a set of rules that correlate pa-ticular states of the working memory with actions to be

IH-24

performed (including working memory changes),

* a driver program that iteratively evaluates the applicability of rules and performs actions
associated with firing selected rules' actions.

Although Production Systems can be programmed in both general purpose and a variety of special
purpose languages, the fundamental form of a rule, or production, is:

Label: (cl,c2,...cn) -. (al,a2,...an), where "Label" is a unique identifier for the production,
(c 1,c2,...cn) are boolean conditions, which reference WM contents and which must all be true for the
rule to be applicable, and (al,a2,...an) are actions to be performed when the all the associated
conditions are true. Actions typically involve changes to WM contents and 10 operations.

Production Systems can serve as the basis for different kinds of programmed systems (e.g., forward
and backward chaining reasoning systems). The fundamental model for PS iterative execution is:

initialize working memory;
REPEAT

FOR all rules
evaluate conditionals;
IF all conditionals are true,
THEN add rule to conflict set;

ENDFOR;
select one or more rules from the conflict set;
perform WM updates and other actions specified by selected rule(s);

UNTIL (halting condition is encountered).

Note that expert systems are Production Systems that contain rules derived from human experts.
Since this study's focus is the relationship between architectural features and PS performance it will
focus on Production Systems in general.

3.3.1.2 Production System Architecture Research

This section describes recent research into multiprocessor architectures specifically geared to
supporting Al production systems. Note that architectures designed to support the LISP program-
ming language [Hwang, et al., 1987) are much more general in intent and are not reported here.

1. Production System Parallelism Research (Carnegie Mellon Univ.)

Carnegie Mellon University (CMU) research with significant implications for PS architecture issues
has included: PS algorithm research, studies of fielded PS execution characteristics, and investiga-

111-25

tions of architectural features for PS application efficiency.

a. Rete Algorithm

The Rete algorithm, first proposed by Forgy [Forgy 1982] and later modified by Gupta [Gupta 1984],
compiles PS specifications into a dataflow graph in which rules (productions) that share conditions
share graph nodes that ascertain whether those conditions are met. Tokens, which consist of an add
or delete tag and an ordered list of WM elements, are propagated through the graph during each PS
cycle. Rete graph nodes consist of [Gupta 1987]:

* constant test nodes determine whether a WM element has a given constant value;

* memory nodes store tokens indicating the results of previous match attempts: 'alpha
memory nodes' storing individual match test results and 'beta memory nodes' storing the
match test results of conjunctive tests;

* two input nodes test for joint satisfaction of conditions and consistent variable bindings;

• terminal nodes indicate whether a production should be added or deleted from the conflict
set.

Rete is a modest state saving algorithm, in that the results of previous cycles' match attempts for
single condition tests and some conditional conjunctions are kept, but not the results of whether every
permutation of a rule's conditions were matched or not. The Rete algorithm provides a degree of
parallelism by letting rules that share conditions also share graph nodes where the conditions are
evaluated. A major source of Rete efficiency springs from minimizing computations that accrue from
WM changes by propagating only the tokens associated with affected productions through the graph
during the next cycle.

b. PS Measurements

A detailed study of fielded Production Systems [Forg 1981] written in the OPS5 PS language and
various simulation projects (see [Forgy, et. al. 1984] and [Gupta, et.al. 1986]) identified several
important characteristics of such systems, including:

• a change to WM typically affects few productions (rules),

* coarse-grained production parallelism affords limited speed-up possibilities.

c. Architectural Research

As a result of these studies and simulations, CMU researchers have concluded that the fine-grained
parallelism, moderate state-saving approach represented by the Rete algorithm is the most promising

III-26

direction for parallel PS development [Forgy, et.al. 1984], [Gupta, et.al. 1986], [Gupta 19871. They
have concluded [Gupta, et.al. 1986] that the most important architectural features for parallel
Production Systems are:

* shared memory

* a modest number of high-performance processors (maximum of 32-64)

* the use of shared buses to connect processors to shared memory

• a hardware task scheduler.

While various ideas for a CMU Production System Machine have been proposed [Forgy and Gupta
1986] [Gupta 1987], current research is apparently focusing on using an Encore Multimax [Tambe,
et.al. 1988].

2. Tree Topology Architecture Research (Columbia Universiy)

The basic thrust of architecture research for PS applications at Columbia University has involved
tree-structured multiprocessors utilizing low and intermediate capacity PEs.

a. DADO Architectures

The DADO [Stolfo 1987) and NON-VON [Shaw 1982] architectures developed at Columbia
University were strongly shaped by the goal of efficiently supporting parallel PS operations [Stolfo
and Miranker 1986] [Shaw 1985] [Shaw 1987]. The two architectures are also both characterized
by a tree topology interconnection network for processor to processor communications.

The DADO2 architecture is a 1023-processor machine that uses a special 1/0 switch and VLSI circuit
to connect processors. DADO2 is a partitionable MIMD/(M)SIMD machine, in which PEs can
operate in SIMD mode by effectively broadcasting instructions to subtree descendents or receiving
instructions from ancestor PEs.

Several algorithms have been proposed for implementing PS on DADO [Stolfo 1984] [Miranker
1984] [Gupta 1987]. Three of these algorithms are outlined below as described in [Stolfo 1984]:

original DADO algorithm-the DADO tree is divided into
(1) an upper tree portion devoted to synchronization and conflict set resolution
(2) a PM-level that operates in MIMD mode on a subset of the production rules
(3) a WM-level that consists of PE subtrees that act in SIMD fashion as an associative

memory under the control of an ancestor PE at the PM-level.

111-27

* fine-grained Rete algorithm--a Rete dataflow graph is mapped onto the DADO tree-
structured architecture, which operates in MIMD mode with a natural pipelining effect.

" TREAT algorithm--also involves partitioning the DADO tree into upper tree, PM and WM
levels. Rule conditions are treated as relational algebra terms that are tested at the WM-
level. The TREAT algorithm saves alpha memories (results of single condition tests) in the
WM subtrees, and computes only those beta memories (results of two condition tests) that
changes to the working memory (PS database) indicate will be relevant to the next cycle
of computation.

Although Gupta has estimated the maximum performance of DADO PS algorithms at 215 working
memory element changes per second (WMECS) for the TREAT algorithm and 175 WMECS for the
Rete algorithm [Gupta 1987], the most recent Columbia data available for this study [Stolfo 1987]
does not give any performance data in terms of WlvMCCS.

b. NON-VON Architecture

The general NON-VON architecture [Shaw 1985] employs a complete binary tree of 8-bit small-
processing-elements (SPEs) in which nodes are connected to tree neighbors (ancestors and descen-
dents), as well as to other nodes at the same tree level. One or more microprocessors, or large-
prc , ssing-elements (LPEs), are connected to various parts of the binary tree and can control the
small processing element subtrees beneath them in SIMD fashion.

Shaw has estimated NON-VON PS performance using a parallel version of the Rete algorithm [Shaw
1985]. The simulated NON-VON algorithm used two parallel SIMD steps to perform intra-condition
testing: first, simultaneously evaluating individual terms in rule conditio..,, then determining
whether conditions' relational operators were satisfied and whether variables appearing niore than
once within a single condition were bound consistently. Inter-condition testing (determining
whether a variable appearing in multiple conditions associated with a single rule is bound
consistently) was performed by multiple-SIMD execution, in which LPEs used associated SPE
subtrees to perform an associative search.

Using estimates for non-overlapped LPE execution and an instruction level simulator for SPE
operations, Shaw projected that a NON-VON configuration with 16K SPEs and 32 LPEs could
execute production systems at 903 rule firings per second or 2000 working memory changes per
second [Hillyer and Shaw 1984, Shaw 1984, Gupta 1987].

3. Data-Flow Architecture Research (Honeywell)

Researchers at the Honeywell Computer Sciences Center and at the University of Kaiserslautern in
West Germany have proposed a data-flow architecture, PESA-1, to support parallel PS execution
[Ramnarayan, et.al. 1986]. This approach is predicated on mapping the data-flow network used by

111-28

twe Carnegie-Mellon Rete algorithm onto a bus-based data-flow architecture. In such a scheme, PEs
perform the functions of Rete nodes testing equality with constants, checking variable bindings,
storing WM elements that have met prescribed conditions, and storing instantiations of PS rules to
be added to or deleted from the conflict set.

The proposed PESA- I architecture is structured as multiple levels of processors and memories
(numbered 0 through n) with buses connecting adjacent levels. Each level, i, of processors and
memories is connected to three buses (i-l, i, and (I+i)mod n+l). This connectivity rule ensures that
level n 'wraps' back to level 0. PEs at level i can send their outputs to any of these three buses. Nodes
that are at the same level in the Rete algorithm's data-flow network are mapped to these PESA-l
physical levels.

Rete tokens (see previous section on CMU research) propagate downward through PESA- 1 levels,
in a manner analogous to their propagation through the Rete graph. When a token reaches a given
PESA level, it is broadcast to all the PEs a. that level, which check a field within the token record
that indicates whether the token should be processed at that level or forwarded to the next level. A
token may be processed by all the PEs at a given level (i.e., used to check t6' consistency of variable
bindings in a rule's conditions); however, only one PE stores that token for use in subsequent cycles.
The authors suggest various schemes for determining the storing PE in a way that achieves uniform
!oad distribution [Ramnarayan, et.al. 1986].

Synchronization is accomplished by having all PEs at a given level communicate that any required
processing of the current token has been completed before work on the next token is begun.

4. Associative Memory Architecture Research (Loral Systems Group)

Research performed by Loral Systems (formerly Goodyear Aerospace Corporation) [Reed, Smit,
and Lott 1986] suggests that the parallel processing capabilities of an associative memory architec-
ture can be effectively utilized fo- expert systems.

Reed describes implementing a production system for real-time ELINT operations on the ASPRO,
a militarized version of the STARAN associative memory architecture. This PS consisted of 545
production rules and 582 facts. Performance results were reported for a simulated tracking scenario.
During the 10 real-time scenario minutes, 2 seconds of ASPRO compute time were consumed to
perform : 4637 parallel searches of the rule data base, 6524 rule firings, and 2164 track report
responses. The ASPRO, therefore, achieved 1.2 million rule interpretations per second. Note that
if the 6524 rule firings involved an average of 3 WM (data base) updates perrule, the system achieved
9786 working memory element changes per second.

A key aspect of the ASPRO PS implementation consists of using bit-slices to represent rule
conditions, rule consequences, and the current state of the working memory (,VM) in order to exploit
the parallel processing capabilities of an associative memory architecture. Preprocessing operations

111-29

construct horizontal bit-slice representations of rule preconditions and results. The current state of
the working memory, is represented at run-time by vertical bit-slices. Each rule bit-slice is compared
against the current WM bit-slice in parallel, generating a mask which flags rule preconditions that
are not matched in the WM. A single OR instruction is used to update the WM bit-slice by setting
the. bit positions corresponding to the 'assertions' associated with rule firings.

Several implementation constraints should be noted. First, the system is a closed domain, in that new
data base components cannot be added dynamically; this is essentially a consequence of mapping
projected database values to bit-slice locations during preprocessing. Second, the number of PS rules
is restricted by the number of ASPRO processing elements (1792, in the reported application).
Finally, the data input to the system in real-time must be translated into "domain expressions" that
can be mapped to the proper data base bit-slice position, although this operation can be performed
by preprocessors associated with the ASPRO.

3.3.2 Production System Applications Characterization

3.3.2.1 Fundamental Processes

Artificial Intelligence Production System applications involve the following fundamental processes:

initialization-The working memory (PS database) is initialized to some appropriate state;

if a state-saving algorithm is employed, a data-flow graph or equivalent data structure must
be initialized, possibly involving considerable computations.

" data acquisition-If the application accommodates WM changes from sources other than
rule firings (e.g., the ASPRO tracking and surveillance application [Reed, et. a., 1986])
then the acquisition of WM data, possibly in real-time, will constitute a significant
application process.

* condition evaluation-In order to determine which PS rules are applicable, the system
determines whether the preconditions associated with a rule have been met. Such condi-
tions are typically expressed as a list of boolean relations. Algorithms that save previous
state information do not have to evaluate each condition on every pass through the
execution cycle.

* rule selection-Rule selection involves determining whether all the conditions associated
with a rule have been evaluated as true; thus, the selection process involves all the
individual instances of condition evaiuation.

* conflict resolution-When more rules may be selected as applicable than can be fired in a
single cycle, one or more rules are selected from the conflict set to have their associated

111-30

actions executed. A variety of strategies can be used for resolution, including most recently
fired, less recently fired, and user-defined priority.

rule f'ing-The rule firing process involves performing the actions associated with a
production. Typically, these actions are either WM value changes or I/O operations.

3.3.2.2 Key Algorithm Types

1. Algorithm State Saving Characteristics

PS algorithms may be characterized according to the degree of state saving (storing results of
previous condition evaluations) that they exhibit [Gupta, et.al. 1986]. A spectrum of possibilities
exists that runs from no state saving through TREAT, Rete and Oflazer algorithms. These algorithms
are outlined below in ascending degree of state saving.

• A non-state saving algorithm does not store information about condition evaluation from
previous cycles.

• The TREAT algorithm [Miranker and Shaw 1984] stores information about individual
condition matches against WM elements.

• The Rete algorithm saves information about both individual condition matches and some
combinations of condition matches.

" The algorithm proposed by Kemal Oflazer [Ofla 1987] would store information about most
relevant combinations of condition tests for each production.

2. Algorithm Execution Modalities

Reported PS algorithms may be classified according to their execution modality, as shown below:

a. MIMD

The parallelized Rete algorithm developed by CMU researchers [Gupta 1987], [Gupta 1988] is an
MIMD algorithm in which PEs concurrently perform the various kinds of processing associated with
the Rete dataflow graph nodes. The fine-grained Rete algorithm for DADO architectures reported
by Stolfo [Stolfo 1984] maps the Rete graph onto the DADO tree structure for MIMD operation.

b. MIMD/(M)SIMD

The original DADO algorithm reported in [Stolfo 1984] exhibits MIMD/(M) SIMD execution, with
PEs in the upper tree performing synchronization and selection operations in MIMD mode, while PE

I1-31

subtrees at the WM-level perform independent SIMD associative memory searches. The TREAT
algorithm [Stolfp 1984], [Miranker and Shaw 1984] exhibits similar MIMD/SIMD execution.

c. (M)SIMD

Shaw's NON-VON OPS5 algorithm [Shaw 1985] uses 32 large-scale processors to control
(M)SIMD processing of Rete inter-condition testing, but does not appear to utilize MIMD
processing.

d. SIMD

The PS algorithm for the ASPRO associative memory processor [Reed, Smit and Lott 1986] uses
SIMD execution to simultaneously compare bit-vectors, which represent rule conditions, against a
bit-vector representing the current Working Memory state.

3.3.2.3 Performance Requirements

PS performance requirements are clearly shaped by the particulars of a given application such as
number of rules, working memory volatility (average database updates per rule firing), and whether
real-time response is required. In addition, the environment (e.g., land-based, embedded, space-
borne) can reasonably be expected to influence performance requirements. Although precise
evaluations of PS algorithm performance requirements would have to be made on a case-by-case
basis, meaningful judgements about architecture suitability for PS performance can be drawn by
looking at the essential components of PS algorithms that will influence performance.

Published studies of PS performance requirements (e.g., [Gupta, et.al. 1986], [Quinlan 1986]) have
identified loads, compares and branches as the instructions most often involved in PS execution.
Note, however, that even meticulous studies are sometimes shaped by presuming the superiority of
a particular algorithm or by assuming that an architecture must possess TvN machine features, such
as general-purpose registers. For example, the performance of a PS algorithm running on a
representative TvN uniprocessor would be heavily influenced by the comparative speed of opera-
tions such as loading a pair of registers with a WM element and an element appearing in a rule
condition, and then comparing them. However, as the Loral ASPRO PS approach demonstrates, it
is possible to implement a PS in which traditional register load and compare operations play no
significant part. Performance analysis for this study, therefore, will be couched in terms of generic
processes, rather than instruction types that might involve unduly restrictive presumptions about
architectures.

The most important general performance requirements for a PS are:

data acquisition-For some applications, such as a PS requiring real-time response and
handling a heavy computational load due to a large number of conditional evaluations or

111-32

WM updates, it is likely that PEs must be available to prepare incoming data for WM
insertion. Note that potentially complex synchronization may be required if the same WM
components can be changed by both rule firing and incoming data.

condition evaluation-Boolean tests must be conducted rapidly, with as much parallel
evaluation as is productive. It is likely that some state saving will be employed to reduce
the number of evaluations required per cycle. Note that this process is likely to be the most
critical to overall system performance [Gupta, et.al. 1986] and the process that most
requires fast memory subsystem performance.

rule selection-Atomic conditional evaluations should lead to identifying relevant rules as
soon as possible; it is desirable to avoid having the execution time for determining each
rule's relevancy be proportional to the largest number of preconditions associated with a
rule.

working memory updates-Although the relevancy of few productions may be altered by
the updates triggered by a single rule's firing ([Gupta, et.al. 19861, [Gupta 1987]), the
performance of this process may be critical in the face of either distributed copies of WM
(hence, updating multiple WM copies) or of synchronization measures that allow WM
contents to be updated by both external data acquisition and rule firings.

3.3.2.4 Hardware Architecture Demands

Just as the PS performance analysis above has been conducted in generic terms to avoid precluding
consideration of innovative architectural or algorithmic solutions, hardware architecture demands
will be analyzed in a similar manner. Likely PS hardware architecture demands are reported below.

a. Memory Demands

Memory subsystem speed is likely to be critical to overall PS efficiency because matching production
preconditions to the current WM contents consumes the vast majority of compute time in studied
applications [Gupt, et.al. 1986]. This aspect of PS performance has encouraged approaches using
both associative memory processors [Reed, Smit, and Lott 1986] and subtrees of low-capacity
processors with private memory to essentially mimic associative memories (e.g., [Shaw 1985],
[Stolfo 1984]). Shared memory solutions (such as [Tambe, et.al. 1988]) will place heavy demands
on access synchronization and cache coherency mechanisms.

b. Processing Demands

Because condition testing consumes more of the execution time in surveyed PS systems, the speed
of comparison instructions is critical to PS applications. In more traditional architectures, this factor
militates for scalar processors with fast boolean test instructions; the Loral associative memory
approach suggests bit-vector comparisons as a possible alternative.

111-33

c. Interconnection Network Demands

Reported results suggest that processor-to-memory interconnections are not a performance bottle-
neck for PS applications using a Rete-style algorithm, a small number of processors, and shared
memory [Gupta 1987], [Tambe, et.al. 1988]. However, in cases where the WM is partitioned and
distributed among multiple memories, processor-to-memory interconnection performance could
become a limiting factor.

The Columbia University research described above involved tree structured processor-to-processor
interconnections. If a dataflow PS approach is used in conjunction with such an interconnection
topology, the local nature of data flows is likely to prevent the interconnection network from
constituting a performance bottleneck. In the event that the processor-to-processor interconnection
topology does not so closely match the algorithmic approach, interconnection network latency could
become critical to required performance.

d. Environmental Demands

In addition to the performance demands that accrue from the computational characteristics of PS
applications, special demands on hardware architecture may be dictated by environmental require-
ments. For example, planned spaceborne applications will have to meet demands for ruggedized,
radiation-hardened components [Lum 1988].

3.3.3 NvN Architecture Suitability for AI Production Systems

The following assessments of architecture suitability for AI production systems are based on both
reported research results and conceptual analyses. These assessments do not rely on reported timing
data in an absolute sense, because such timings are often based on software simulations whose
precision cannot be established and because timing data is reported in diverse forms that cannot be
compared fairly.

3.3.3 1 Pipelined Vector Uniprocessor Architectures (Class I)

The suitability of Pipelined Vector Uniprocessor Architectures for implementing production
systems appears to be contingent on the development of "vectorized" algorithms for producion
condition testing. While the fast scalar processors found in most such architectures may achieve
better PS performance than some multiprocessor architectures, this could not, in itself, make vector
architectures optimal for PS. Preliminary results achieved by Loral with a bit-vector, associative
memory processing approach to production systems, however, suggest that effective PS algorithms
based on boolean or integer vectors might be a fruitful area for research.

3.3.3.2 Rhytnmic Cellular Control Architectures (Class II)

Since Rhythmic Cellular Control architectures (systolic and wavefront arrays) are geared to
implementing predictable, orthogonal calculations, they are not well-suited to the condition testing

111-34

phase that is most important for efficient PS implementation. A Rete-style dataflow algorithm could
conceivably be mapped onto a two-dimensional systolic or wavefront array, assuming that appro-
priate operands (e.g., tagged tokens and a list or mask of WM elements) could be pulsed from PE to
PE. However, other architectures are likely to provide more cost-effective solutions for PS
implementation.

3.3.3.3 Processor Arrays (Class III)

Processor Arrays are not promising candidate architectures for implementing most Al production
system algorithms. The classic SIMD mode of processor array operation is not well suited to the
condition testing operations that constitute most of a production system's computational demands.
Two significant problems arise from processor arrays broadcasting a single instruction to multiple
PEs that operate in lockstep. The conditions to be tested may involve different boolean tests, such
that only a few PEs can operate in parallel for each cycle. Second, since productions are associated
with a varying number of conditions, the time expended on condition testing would be proportional
to the length of the longest list of conditions. Condition test sequences for productions could be
altered at compile time to make all test operations using the same instruction appear in the same order
for each production. However, the time taken for each type of test would be proportional to the
longest list of tests of that type associated with a production.

Although Forgy explored implementing a PS on the llliac-IV [Forgy 1980], it does not appear that
any hard timing data or especially promising techniques resulted from that effort [Gupta 1987]. A
radically different algorithmic approach might make Processor Arrays more suitable for production
systems, but current PS techniques are not amenable to efficient parallel implementation on
Processor Array architectures.

3.3.3.4 Associative Processor Architectures (Class IV)

Associative processors appear to be a viable architecture for the kind of bit-vector oriented algorithm
developed by Loral [Reed, Smit and Lott 1986]. Such architectures achieve considerable parallelism
in the condition testing phase, since a large number of processors can operate in parallel to test bit-
slices representing conditions against a bit-slice representing the current working memory's
contents. Note that rule firing that alters WM contents can essentially be executed with a single OR
instruction with this approach.

Although preliminary results are encouraging, at least two significant constraints should be noted.
First, the number of PEs effectively constrains the number of productions that can be accommodated.
Since current research involves more than 2000 PEs this limit does not appear to be an onerous one,
however. Second, the bit-vector approach requires that WM elements be reduced to a single piece
of information. In the embedced, real-time environment for which the Loral ASPRO PS was
designed, this requires that the data acquisition process perform a substantial amount of data
compression. A heavily loaded associative processing PS, therefore, may require a set of preproces-

111-35

sors to cast real data into a bit-vector format. Despite these limitations, reported research suggests
that associative memory architectures are legitimate candidates for parallel PS implementations.

3.3.3.5 Operand-Driven Architectures (Class V)

The dataflow (data-driven) subclass of operand-driven machines is a suitable architecture for
implementing PS algorithms based on a dataflow model of execution, such as the parallelized Rete
algorithm [Gupta 1987]. Although the viability of the particular architecture proposed by Honeywell
researchers [Ramnarayan 1986] is likely to depend on both bus latency and load balancing
techniques, the structural match between data-flow architectures based on packet communications
and data-flow PS algorithms makes this architectural subclass an attractive candidate for PS
implementations. Note that the reduction (demand-driven) subclass of operand-driven architectures
is not as promising, since its computational model based on nested expressions does not closely
match PS condition testing operations.

3.3.3.6 General-Purpose Multiple-PE Architectures (Class VI)

Given the diversity of General-Purpose Multiple-PE (GPMPE) architectures, this section will
separately evaluate the GPMPE subclasses for which timely research results are available.

a. Bus-Based Processor-to-Memory Interconnection Architectures

The largest body of published PS architecture studies reflects the work of Carnegie-Mellon
researchers (e.g., [Forgy, et.al. 1984] [Gupta, et.al. 1986] [Gupta 1987] [Gupta, et.al. 1988]). Their
metrics for existing PS applications written in OPS5 suggested that:

(1) a PS offers limited opportunities for parallel execution speed-up;

(2) exploiting PS parallelism at a fine-grain level is most effective; and

(3) working memory changes caused by rule firing affects relatively few productions.

As a result of these findings, they have argued that a shared memory, bus-based architecture with
roughly 16-64 processors is an extremely effective architecture for production systems implemented
with a Rete-style algorithm. In support of this conclusion, they argue that relatively few processors
(generally 10-12) can be kept busy with productive work, that shared memory and bus contention
does not appear to be a bottleneck, and that contention for the scheduler PE has the most practical
impact. In sum, they make a compelling case for the suitability of this architecture type, at least for
knu ,'n PS applications written in an OPS5-like language and implemented with a Rete-style, data-
flow algorithmic approach.

111-36

b. Tree Structured. Processor-to- Processor Interconnection Architectures

To date, evaluations of this architectural type have essentially been made on the basis of predicted
performance for the DADO and NON-VON architecture families developed at Columbia University
[Gupta, et.al. 1986, Hillyer and Shaw 1984]. These predicted performance levels (approximately
900 rule firings/sec. and 2000 WM changes/sec.) fall short of predicted results for both bus-based
shared memory and associative memory architectures. Several mitigating factors should be taken
into account, however. First, the modest power of existing tree architecture PEs (.5-3 MIPS) may be
an inaccurate gauge of that architectural type's potential performance. Second, most of the reported
data assumes that the PS is coded in OPS5 or OPS83, that a Rete-style algorithm is employed, and
that the PS possesses structural relationships similar to fielded OPS5 PSs. Hence, Gupta [Gupta
1987] suggests that the tree architectures might show more promising performance for production
systems characterized by a much larger 'affect set' (number of rules affected by a single rule firing's
working memory changes). Stolfo [Stolfo 1987] reported significant speed-ups for PS implemen-
tations on DADO2 compared to uniprocessor implementations; however, metrics showing perform-
ance superior to other NvN implementations has not been available for this study. In sum, this type
of architecture appears promising for PS implementation, but results have not yet been shown for
such an architecture based on powerful PEs and using an algorithmic approach that fully exploits the
architecture's characteristics.

c. Hypercube-Structured. Processor-to-Processor Interconnection Architectures

This section considers two kinds of research conducted for GPMPE architectures based on processor-
to-processor interconnections with a hypercube topology.

A recent study [Gupta and Tambe 1988] concludes that message-passing, hypercube-structured
architectures with decreased communications delays are effective hosts for Rete-style PS algorithms.
The studied scheme partitions PEs into the following groups: control processor, PEs that perform
constant-tests, PEs that perform conflict-resolution, and PEs that perform matching (variable
binding) tests. Since checking variable bindings at "two-input" nodes of the Rete dataflow graph is
the most compute-intensive part of the algorithm, a significant aspect of the proposed hypercube
scheme involves using a distributed hash table to access items to be matched and using more than
one PE to perform tests associated with a single Rete node. The study makes a cogent case for the
suitability of message passing architectures. It should be noted that much of the case is based on
recent increases in communication bandwidth and that 4 MIP processors are assumed.

Research performed by Thinking Machines Corporation on the Connection Machine, which exhibits
a hypercube topology but is not a message-passing architecture, suggests that memory-based
reasoning is an effective approach to problems in the PS domain [Waltz 1987, Stanfill and Waltz
1988]. The memory-based reasoning approach involves drawinlg inferences from a large database
of individual cases, rather than using rule-based reasoning. Since timing data for this approach
cannot be reported in terms of production firings/second or WM element changes/second it is

111-37

difficult to directly compare the performance of memory-based reasoning and PS applications. Other
recent research [Blelloch 1986] suggests that the Connection Machine can effectively be used to
implement an inferencing network model that provides functionality similar to PS capabilities. It is
worth noting, then, that hypercube architectures are promising hosts for algorithmfic approaches that
attack problems similarly to the way a PS does.

3.3.3.7 Neural Network Architectures (Class VII)

Neural network achitectures are best considered as possible alternatives to Al production systems,
rather than as possible hosts for them. Consequently, no attempt has been made to evaluate the
suitability of neural network architectures for implementing production systems.

3.3.4 Ranking NvN Architecture Classes on Their Suitability for Artificial Intelligence Production
Systems

This section of the report ranks the NvN architecture classes that have been reported in recent
technical journals as being viable for efficiently executing artificial intelligence PS algorithms.

Preceding paragraphs of this section of the Final Report discussed the analysis of NvN class
suitability for the Al PS application domain. This section summarizes that discussion and presents
a ranking of the most promising NvN architecture classes for Al PS. Section 3.3.4.1 briefly reviev-
Al Production Systems; Section 3.3.4.2 identifies the NvN architecture classes found to be suita)e
for executing AI production systems; Section 3.3.4.3 presents a tabularizd-i ranking of tL .se
architectures that were found to be suitable.

3.3.4.1 Al Production System Review

Production rules can serve as the basis for a variety of Al systems. For example, backward-chaining
systems, which are often used for hypotheses verification, start with a WM state and iterate through
a cycle that determines which rule preconditions would have permitted rule action firings that
resulted in some given WM state. Forward-chaining systems initialize the WM, then iteratively fire
one or more rules ad infinitum, or until a specifieu halting condition is encountered.

The evaluation of NWN architecture class suitability that follows is based on forward-chaining
Production Systems, since the technical literature on parallel architecture PS applications is
dominated by this kind of system and provides a sound basis for the analysis.

3.3.4.2 Identifying Suitable NvN Architecture Classes

The PS performance studies that have been reported for NvN architectures can be used to identify
the architecture classes that are most promising tor Al PS applications. Although one cannot use the
performance characteristics of the particular architectures studied to accurately predict the PS

111-38

performance of each member of an entire NvN architectural class, one can use the published research
to establish an informed estimate of the relative suitability of each class for Al PS.

Table 3-6 shows the NvN architectures that have been used in recent PS performance research and
the NvNACS classes to which they belong. Table 3-7 shows the results of different research activities
published in the literature. These published results indicate different kinds of performance
measurements that were obtained by various mechanisms. Table 3-8 indicates the relative rankings
of various NvN architectures. These are discussed below.

1. Ranking Best Fits

a. Limitations of Existing Performance Metrics

There are two significant barriers to using published performance data to perform head-to-head
comparisons of NvN architectures to determine suitability for forward-chaining production systems.
First, there is no widely accepted standard for PS performance measure. Archi-ectural efficiency has
been reported using different metrics, such as the number of rules fired per second, the number of
working memory element changes per second (wmecs), the speed-up over various single processor
implementations, as well as the percentage of theoretically possible speed-up achieved. Such
divergency in performance measures precludes any straightforward architecture comparisons.
Second, published performance data has been obtained through dissimilar means, including
benchmark timings, software simulations, and theoretical estimates.

Table 3-6. NvNACS Classes in Recent PS Performance Research

NvNACS Classification Architecture Research

Class IV: Associative Memory ASPRO [Reed 86, Lott 87]
Subclass: Bit-Serial

Class V: Operand-Driven PESA-1 [Ramnarayan 86]
Subclass: PE-to-Memory Comm
Order: Packet Communication

Class VI: G-P-Multiple-PE CMU PSM [Gupta 86, 87]
Subclass: PE-to-Memory Comm Encore Multimax [Gupta 88]
Order: Bus Interconnection

Class VI" G-P-Multiple-PE DADO, DADO2 [Stolfo 84, 87]
Subclass: PE-to-PE Comm.
Order: Tree Topology

Class VI: G-P-Multiple-PE NON-VON [Shaw 82, 85]
Subclass: PE-to-PE Comm.
Order: Tree Topology

Class VI: G-P-Multiple-PE hypercubes [Gupta. Tambe 88]
Subclass: PE-to-PE Comm.
Order: Hypercube Topology

111-39

.. , la i m m iam___il___li

Table 3-7. Performance Metrics for NvN Architectures

Rules Fired Timing
Architecture Algorithm WMECS per Second Mechanism Source

ASPRO Reed Bit-vector x 3262 timed [Reed 861
ASPRO Lott Bit-vector 5340 800 timed [Lott 87,88]
CMU PSM Parallel-RETE 9400 x simul'd [Gupta 86]
DADO Parallel-RETE 175 x est'd [Gupta 86]
DADO TREAT 215 x est'd [Gupta 86]
NON-VON RETE 2000 x est'd [Gupta 86]
NON-VON Parallel-RETE x 903 sir & est'd [Shaw 85]

3.3.4.3 NvN Architecture Classification Rankings

Although the diverse performance metrics and measurement techniques described above cannot
serve as the basis for rigorous comparisons of individual architectures, they can be used to categorize
how compelling an argument has been made for the suitability of various NvN architecture types.
Table 3-8 shows a ranking of NvN architectures; that is, the best fits for Al production systems.

Table 3-8. Ranking NvNACS Categories for Parallel PS Suitability

Summary of the Rationale
Rank NvNACS Class and Remarks

I Class VI: GPMPE copious research literature;
Subclass: PE-to-Mem. Comm. extensive simulations; best
Order: Bus Interconnector simulated 'wmecs' performance

(see above); highly flexible

1 Class IV: Associative Memory best benchmarked 'wmecs'
Subclass: Bit-serial performance; algorithms

have more limited flexibility

2 Class VI: GPMPE significant speedups over
Subclass: PE-to-PE Comm. uniprocessor implementations
Order: Tree Topology have been demonstrated

3 Class V: Operand Driven promising paper studies;
Subclass: Data driven evaluation must await
Order: Packet Comm. implementation

3 Class VI: GpmPE promising paper studies;
Subclass: PE-to-PE Comm. evaluation must await
Order: Hypercube Topology implementation

IIH-40

1. NvN Architecture Classification Ranking Rationale

Cogent arguments have been made for the suitability of both shared memory, bus-based multiproces-
sors [Gupta, et al. 1986, Gupta, et al. 1988] and associative memory architectures [Reed, Smit and
Lott 1986, Lott 1987]. PS implementations exist for both kinds of architectures and benchmark data
is available. In addition, both architectural solutions have shown significant speed-ups over
uniprocessor implementations [Gupta, et al. 1988, Lott 1987] and both appear likely to achieve on
the order of 9000 wmecs [Reed, Smit and Lott 1986, Gupta, et al. 1986].

A plausible case has been made for tree-structured multiprocessors using processor-to-processor
communications [Stolfo 1987]. Production systems implemented on this architecture have demon-
strated some rather significant speed-ups over uniprocessor implementations, but performance data
comparable to that reported in the category above (in terms of wmecs or rules fired/ second) has not
thus far been published. Recent research suggests that significant gains in parallelism might be
achieved by concurrently executing multiple production systems or WMs.

Performance estimates for both dataflow [Ramnayaran, et al. 1986] and hypercube message-passing
architectures [Gupta and Tambe 1988] suggest that these architectural types are promising candi-
dates for further research. However, until PSs have been implemented on these architectures and
actual measurements have been reported, the case for the suitability of either architecture must be
regarded as very preliminary.

2. Unraked NvNACS Classes

Several NvNACS classes or subclasses have not been ranked in the foregoing analysis. Lack of
inclusion does not imply that these NVN architectural types would be inefficient hosts for forward-
chaining production systems; it means, simply, that recent research literature does not include reports
on this type of research using these architectures. The interested reader may refer to earlier
paragraphs of this section for general remarks about the possible utility of these architecture classes
for forward-chaining Al production systems.

3. Cncus

Several NvN architecture types have recently been investigated as hosts for parallelized, forward-
chaining PS algorithms. Available performance data for parallel production systems does not
provide a definitive assessment of the suitability of all NvNACS architecture types for parallel PS
applications. However, these research findings can reasonably be used to rank how compelling a case
has been presented for the investigated NvN architecture types' viability.

3.3.5 Conclusions

This section summarizes the current state of research in applying NvN architectures to artificial
intelligence production systems.

111-41

Research in PS architectures has been strongly shaped by the PS measurements performed at
Carnegie Mellon University. This detailed investigation of PS metrics serves as a useful basis for
comparing proposed architectures and algorithms. However, it is possible that future PS applica-
tions, especially those specified in a format that diverges from OPS5, may exhibit significantly
different run-time characteristics.

Architecture comparisons are further complicated by two factors. First, in the absence of a standard
performance measure, architectural efficiency has been reported in various forms that are difficult
to compare, including number of rules fired per second, number of Working Memory (database)
updates per second, speed-up over single processor performance, percentage of theoretically
possible parallelism exploited, and percentage of theoretically possible speed-up achieved. Second,
the performance data that is available ranges from actual timings, through simulations, to theoretical
estimates.

An overall evaluation of NvN suitability for PS applications, therefore, must take into account
different performance metrics, derived from divergent methods. Nevertheless, a general assessment
can be made from the preponderance of available evidence. A strong case has been made for the
viability of architectures characterized by a moderate number of processors (e.g., 16-32) that use bus
interconnection technology to access shared memory. Preliminary results for associative memory
architectures are impressive, within likely preprocessing constraints. Proposed PS architectures
based on dataflow principles and on hypercube-structured message-passing appear promising, but
there are no extant hard timing data that supports their viability. Tree-structured multiprocessors
have shown some encouraging speed-up over uniprocessor performance, but appear to require either
PEs with substantially more bandwidth or a different algorithmic approach to be fully exploited.

These assessments are clearly based on the current state of research, which is strongly influenced by
both the prevalent dataflow algorithmic approach and the nature of fielded PS applications.

It is extremely difficult to foresee the emergence of radically different algorithmic approaches. Note
also that new algorithmic approaches to implementing production systems may be accompanied by
the development of techniques that exhibit PS functionality, such as memory-based reasoning or
neural network learning, but that require very different architectural support. The current technical
literature detailing the results of recent research certainly suggests that several of the NVN
architecture classes can be exploited for more or less efficient parallel PS execution; however,
forthcoming research might well extend the set of viable architectural solutions.

3.4 REAL-TIME SIMULATION

3.4.1 Introduction

This section of the Report describes systems designed to simulate North American air defense
architectures and components of the Strategic Defense Initiative (SDI). The models, interactions,

III-42

and requirements detailed herein are intended to provide sufficient information on the structure and
operation of the simulation to support the making of informed judgments regarding potential re-
hosting of these simulations on Non-von Neumann (NvN) architectures. The simulation instances
and the host architecture must be flexible and robust enough to accommodate models operating over
a broad fidelity range, models not yet defined, as well as increases in overall load due to the need to
simulate attacks with greater numbers of threats and weapons. The key to efficient, flexible, and
robust simulation is a well-designed simulation executive. The executive is responsible for
mediating the interactions of each model based on information from the user via the simulation
control routine. Additionally, the executive must control the overall simulation to assure the
repeatability of simulation events for the purpose of validating results. Design concepts for a
simulation executive are discussed in the following paragraphs.

3.4.1.1 Simulation Executives

There are three generally used approaches to designing an executive for digital simulations of large
systems: time-stepped, event-stepped (often called discrete event), or a hybrid that combines both
these approaches. The executive is the k:y to successful sim,,lation and thercfore should be carefully
designed, with particular attention given to simulation efficiency and repeatability in parallel
processing environments. The following paragraphs briefly describe each type and identify facets
or aspects of performance that should be considered during the design.

1. Time-Stepped Executive

With the time-stepped approach, the simulation is updated in discrete intervals, and time advances
at a fixed rate based upon the interval selected. Interactions with objects in this type of simulation
occur within a fixed number of intervals. The time-stepped approach provides an efficient
synchronization mechanism and allows much flexibility. With the controlled interval, models may
be distributed across multiple processors. Also, any level of model fidelity may be supported down
to the resolution of the interval.

Discrete event models (e.g., communications models) can be incorporated into the simulation but are
restricted to execute within the interval or a predefined finite number of intervals. Since the interval
controls the run rate, periods of little interaction run at the same rate as periods of high activity.
Simulation hardware and/or models must be sized to handle the worst-case load within the required
number of intervals. This sizing constraint leads to system resources that are often idle under less
than maximum load conditions.

2. Event-Stepped Executive

With the event-stepped approach, the objects in the simulation interact only at discrete points, and
time leaps from one event to the next in time-sorted fashion. The event-stepped simulation, under
some conditions, may be more efficient than the time-stepped simulation. Since time advances from

111-43

one event to the next in jumps, the simulation advances rapidly in periods of little interaction. Since
the simulation is not tied to a fixed interval, each model may use any amount of time to process its
load in simulating the system without impacting other models. This, however, does impact the total
amount of time required to execute a run. Any level of model fidelity can be supported.

A master event queue centrally manages the simulation; therefore, exact event sequence repeatability
is possible within a uniprocessor environment. The event-stepped approach forces limitations on the
size of the simulation, and there exists no straightforward parallel/multiple processor implementa-
tion capability. The rate of run is dependent on the number of objects/models, and load and model
complexity. The greater the number of objects and the number of models that interact with them, the
greater the size of the processing queue and, hence, the more the efficiency of the executive is reduced
and the longer the simulation takes to execute. This growth is a non-linear "m" or "n" function.
Continuing study of industry technical literature indicates that there is not a general-purpose event-
stepped architecture currently available for a multiprocessor environment.

3. Hybrid Executive

The Technical Evaluation Facility (TEF) for the Air Defense Initiative has many complex require-
ments that can be satisfied only by combining event-stepped simulation with time-stepped simula-
tion. A hybrid executive could provide a centrally controlled discrete event simulation with an
underlying selectable time period.The simulation would be structured, basically, as an instance of
a discrete event design; however, event-time resolution would be limited to the time-step interval.
The discrete-event executive advances time from event-to-event at an event-stepped or preselected
rate. The event queue potentially would have many events for the same time interval that would be
dispatched in FIFO order for a single processor configuration, or in parallel for a multiprocessor
configuration. This would also allow the models to be made up of a mix of discrete and time-stepped
processes and the objects could be updated in parallel with other activities. The primary disadvantage
is that there is no hybrid executive available off-the-shelf. The runtime database must be very
carefully designed to assure that data race conditions do not occur.

3.4.1.2 Simulation Repeatability in Multiprocessor Architectures

Repeatability of results is necessary to establish a level of confidence and to validate the results of
the events occurring in the systems represented by the simulation. Simulation repeatability is defined
here to mean that the results of any two simulations will have bit-for-bit fidelity, regardless of the
time required to run a particular model.

Multiprocessor simulation environments generally have models running on several separate proc-
essors simultaneously, creating the potential for messages between processors (from simulated
system elements) to be received at different times from run to run, thereby producing variable results.
The following subsection discusses five methods to achieve the repeatability necessary to validate
simulation results in a multiprocessor environment. These methods are: Scoreboard, Chandry-
Misra, Timewarp, Management by Exception, and Precursor Messages.

11-44

1. The Scoreboard Method

With this method all messages are sent to a master list that determines when it is safe to run processes
out of order. The method is based on the principle that physical laws or properties govern the behavior
of objects under a given set of conditions. For example, consider the interaction of two processes
S and R. Events resulting from process S require the passage of a certain finite amount of time before
there can be an effect on process R, regardless of the actions of S. To be more specific, assume that
S is the detonation of a nuclear weapon; its effects cannot propagate faster than the speed of light to
affect process R. Events occurring in process R prior to the detonation and the necessary propagation
delay are said to be outside the event horizon of process S. Within a battle management system,
effects propagate at a rate limited by the supporting communication system. The executive in
Scoreboard will run two processes out of order if and only if the later scheduled process is not affected
by any earlier scheduled process.

Using this approach, the simulation begins by computing the event horizon of each process with
respect to every other process. This is done by determining which processes have direct effects on
any other process. At run-time, the executive maintains a list of all messages which are to be run.
The decision to execute a message is made by identifying the processes currently executing and
determining whether or not the new message is within the event horizon of the executing processes;
if the new message is outside the event horizon, then it will be applied, assuming that a processor is
available.

2. The Chandry-Misra Method

With this method, the time at which to send messages is determined from a message list that is
maintained by each processor. Each processor also maintains a queue of messages for all other
processors from which messages can be received. Assuming that each queue has at least one
message, the processor picks up the message with the lowest timestamp. In the event that one of the
queues is empty, the processor must wait in order to determine that an incomir . , ssage to the queue
does not have the lowest timestamp.

3. The Timewarp Method

This method permits processors to execute messages up to a time-check-interval point. Each
processor keeps only a list of the messages it receives and picks up the message with the lowest
timestamp. Periodically, each processor makes a time check; if it finds a message with a timestamp
that precedes the time check it must roll-back to the previous time check and issue a cancel-message
crder for every message up to the time the new message falls into sequence. At this point, normal
processing is resumed. Note however that a roll-back of one processor may cause the roll-back of
many other processors.

111-45

4. The Management by Exception Method

This method relies on each process to predict whether its output messages can be output in the time
allowed. If the processor predicts it cannot meet the time deadline, it notifies the executive, which
then halts all other processes until the slow processor can output its message.

5. The Precursor Messages Method

This method makes use of a "pre-message" message to notify a receiver that a message will be sent
to it as well as the time when it should arrive. The receiving processor continues processing until the
time it expects to receive the message and then halts processing until the expected message arrives;
it then resumes its normal processing.

3.4.2. The Air Defense Model Environment

The ADI TEF models the North American Air Defense Environment and provides for interaction
between simulated real-world objects and the simulated effects. This interaction takes place to
simulate the outcome of events as they would occur under actual conditions. The model is defined
in terms of the described attributes and parameters that determine the behavior of the simulated
objects. The basic framework that links all the objects in the simulation is described in the following
paragraphs.

The region of interest for the TEF is postulated to be a map area. Locations on the map and map
boundaries are defined by latitude, longitude and altitude. The geographical area covered by the TEF
simulation is the whole globe. The latitude-longitude-altitude (LLA) grid establishes the framework
for representing object locations in a scenario as well as for defining environmental effects over the
region of interest. Platform locations are defined by a point determined by the LLA values.
Environmental effects, (atmospheric, electronic, or nuclear) are defined in terms of grid cells that are
affected. The movement of platforms and environmental effects are governed by the models and
parameters which define their behavior.

Sensors and weapons which may be affected by environmental conditions are modeled so that these
conditions are accounted for within the grid framework. The path through which a sensor must look
or a path on which a weapon must travel in order to detect or kill a target contains indexes within the
grid which degrade the object's performance, e.g., the probability of detection (Pd), or probability
of kill (Pk) under the simulated conditions.

The background grid of framework effects are recalculated periodically to account for the changes
that may occur dynamically during a scenario, such as jammer movement or nudets. The use of
latitude, longitude, and altitude as a grid system permits all objects and effects in the simulation to
be described by a common reference frame, eliminating the need for stereographic conversions also
reducing the number of machine instructions required.

111-46

3.4.2.1 Model Descriptions

A description is given, for each model postulated for the TEF, which includes recommendations for
model interaction. The discussion is given in the following paragraphs.

1. Envroameni

The environmental model provides the background effects for the simulation. This model effects
sensor detection capability, communication disruption, and also contains the effect of nuclear k:L1T
and interruptions. The environmental model divides the region of interest (15 degrees North latitude
to the Pole and 360 degrees of longitude) into one degree latitude by one degree longitude grid cells.
Each of these grid cells contains environment and nuclear derived effects which are updated by the
environmental model.

2. Atmosphere

Atmospheric conditions considered in the model are cloud types and altitude, precipitation,
humidity, and ionospheric activity. The conditions are entered as part of the simulation in grid cells
one degree latitude by one degree longitude. The effects are considered constant over the region and
may be scripted to change during the simulation.

3. Enhanced Environment

An enhanced environment is a result of nudets, and shows an increase in the background noise level
detected by sensors and communication receivers. The enhanced environment effects are modeled
on a grid of one degree latitude by one degree longitude, and show decreasing level and also the
affected area slowly increasing over time. These changes require periodic recalculation on the order
of once every five minutes or less.

The effects of threat platforms equipped with ECM/ECCM equipment are modeled based on current

cell location, jamming strength, jamming direction (omni or sector), and band.

5. Terrain

Terrain is stored as static map data and is used to determine sensor coverage holes and line-of-sight
communication disruptions. The terrain mapping grid cell covers four minutes by four minutes.

6. Ncer at

Nuclear effects modeled in the simulation result from salvage fusing, ADI leakage and SDI leakage.
The effects modeled are nuclear bursts, fireballs, and the resulting enhanced environment.

111-47

Nuclear bursts result in the destruction of defender assets, threats, and threat platforms within the
lethal range of the nudet. The lethal range is computed based on the warhead yield and the Height

of Burst (HOB). The time and location, in conjunction with the range, determine the grid cells
affected by the nudet.

8. Fireball

Fireballs result in the disruption of sensor and communication system performance in the vicinity of
the nuclear burst; the grid cells disrupted are determined by the yield and HOB.

9. Object Motion

The object motion models describe the movement and the operational characteristics of Threat, C2,
Weapon, Neutral, and Sensor Platforms; each model type is discussed in the following paragraphs.

a. Threat Platforms--Threat platforms include submarines, surface ships, aircraft, and any other
object which may pose a threat. This category also includes ECM/ECCM (Jammer) platforms which
reduce or obscure sensor performance. Platform type characteristics are modeled with tables; these
characteristics are: (as applicable)

Platform type (submarine, surface ship, aircraft)
Sub-designation (bomber, interceptor, etc.)
Flight profile/movement characteristics
Weapon type and count
Present location (latitude, longitude, altitude)
Present speed
Present heading
Weapon launch location.

b. Threats-Threat models describe the characteristics of cruise missiles, drones, or other munitions
released from threat platforms that are intended to destroy defended assets. Threats will have a
defined target or targets and in the case of nuclear threats, may be salvage fused. Threat
characteristics that define the behavior of a threat are as follows:

Threat type (ALCM, SLCM, High-Fast, Low-Slow, etc.)
Warhead size/type (nuclear, chemical, conventional)
Way points
Speed
Location (latitude, longitude, altitude)
Heading
Target location/detonation altitude (latitude, longitude, altitude).

111-48

c. C2 Platforms--A C2 Platform is any airborne or surface element which acts as a fusion point for
sensor data and/or the tasking of weapons. The C2 platform executes C2 node models. The
individual C2 platform models are based on the specific platform type and the following character-
istics, as applicable:

Platform type
Flight profile/movement characteristics
Present location (latitude, longitude, altitude)
Present speed
Present heading
Loiter/orbit time remaining
Communication links (Tx/Rx, number and type, primary or secondary).

d. Weapon Platforms-Weapon platforms are weapon carriers, such as interceptors and SAMs,
which have the capability to neutralize a threat. Weapon platforms are directed by C2 nodes to
engage targets. The weapon platform is responsible for verifying the intercept/guidance solution
from the C2 node. The weapon platform's target acquisition sensor is subject to sensor detection
processing to determine if it can "detect" the threat. This "macro-C2" model results in detection,
processing, and weapon release on a local scale for the weapon platform.

Weapon platform characteristics are (as applicable):

Weapon platform type
Weapon type/count
Location (latitude, longitude, altitude)
Heading
Speed
Flight profile/movement characteristics
Loiter/orbit time remaining
Communication links (Tx/Rx, number and type, primary or secondary).

Additionally, weapon platforms communicate with a C2 node to provide the information listed
above, as well as the following:

Weapon availability/status (out of action/firing, etc.)
Target engagement status (tracking, lost track, etc.)
Weapon effectiveness (kill, no kill).

The weapon platform's target acquisition sensor is subject to sensor detection processing to
determine if it can "detect" the threat. This "macro-C2" model results in detection, processing, and
weapon release on a local scale for the weapon platform.

111-49

e. Weapons-Weapon models are used to determine weapon effectiveness against threats and threat
platforms. Weapons are launched from weapon platforms to destroy threats and threat platforms.

The weapon model uses the following weapon characteristics to determine weapon effectiveness
(i.e., probability of kill (Pk)):

Weapon type
Target type
Launch location
Range to target
Speed
Intercept geometry
Environmental effects.

f. Sensor Platform-Sensor platforms can be fixed or mobile and carry one or more sensor types for
detecting and classifying objects. Sensor platforms communicate with C2 nodes to report object
detections. Object detections are determined via the sensor detection model. Sensor platforms have
the following characteristics (as applicable):

Sensor types
Location (latitude, longitude, altitude)
Speed
Heading
Flight profile/movement characteristics
Loiter/orbit time remaining
Communication links (TxIRx, number and type, pimary or secondary).

g. Neutral Platform-Neutral platform models are utilized to generate/represent the object loading
on C2 sensor and weapon models as a result of normal civilian, and tanker, air traffic. Flights within
the continental boundaries and outbound transoceanic tracks are represented as a statistical
distribution for object loading. This statistical distribution will not be uniform but will be
geographically sensitive based on FAA flight information. Transcontinental flights entering the
ADIZ are modeled as individual platforms with the following parameters:

Location (latitude, longitude, altitude)
Speed
Heading
Destination
Way point/flight path
IFF/SIF modes and codes.

The transoceanic inbound neutral models are used to simulate potential masking of threat platforms
and threats due to minimal object separation.

111-50

10. Sensor Processing Models

The sensor environment model determines the cells into which the sensor has the capability to detect
targets and the decrease in Pd due to environmental conditions and enhanced environment effects.
This model provides an input to the sensor detection model from which the Pd for each target is
computed. Moving sensor pltforms such as the ASTS are a special case of this mode. Moving
platforms have their cell coverage area redefined on a periodic basis due to their location changes
and resulting change in their sensor coverage area. The decrease in Pd value is computed and stored
for each gr.d cell by sensor type and location.

11. Sensor Detecai0!l

Sensors are active or passive (e.g., radars, infrared detectors, and electrooptical (EO)) devices for
detecting objects. The detection performance characteristics for each sensor are defined in terms
of parameters i elated to each sensor type (radar cross-section, range, IR signature, etc.). For example,
radar cross-sections in three dimensions as a function of aspect angle will be computed in the sensor
model for defender platforms, weapons, t'._reat platforms, and threats. These values will determine
the Pd for each object and subsequently will give rise to the generation of messages to the associated
command element.

a. Sensor Processing-The sensors use grid cells to determine coverage area and Pd. Each object
in every cell within coverage range is checked for detection probability.

Object detection criteria are sensitive to range, aspect angle, 3D crossections, terrain masking, and
environmental effects.

b. Sensor Message Generation-The sensors generate messages for transmission to their associated
command element for detected targets. The message formats and characteristics are determined by
the originating sensor. The messages should contain at least the following information:

Reporting Sensor ID.
Destination ID.
Time Tag---detection time of the target.
Target Location-represented in geographic coordinates (latitude/longitude), or

other similar surface identification)
Target Altitude (if available for the sensor).
Target Speed (if available for the sensor).
Target Heading (if available for the sensor).
Sensor Location-location at time of detection.
IFF Modes and Codes (if available for the sensor).
Probable Target Type and Confidence Level (if available).

III-51

Sensor message types are (as applicable):

Targt Report-Radar, IR and EO type sensors.
Strobe Report-azimuth only return due to ECM and ECCM effects on radar type

sensors.
Status Report-highest priority message, transmitted periodically or at the start of

scan; determines operability of sensor.
IFF/SIF Report-IFF radar report with modes dnd codes.
Track Report-target report message from sensor with integral C2 facility such as E-

3 or their C2 facility where target reports have been pre-processed.

12. Communication Link Models

Communication links provide the path and the medium through which message traffic c/from
sensor, weapons, and C2 platforms flow. Communication link model parameters are described
below.

a. Link Type. The communication link type defines the means of communication 'etween the
transmitting and receiving nodes. The link types modeled are:

Radio and band
Landline
Laser communzcation
Microwave
Fiber optic
Network.

The link types are associated with unique rule sets to determine their behavior under normal (clear
transmission) conditions as well as degradation due to environmental effects.

b. Link Connectivity. The communication link model verifies connectivity between the tran,,mitter
and receiver based on the source and destination information contained in the message. Connectivity
checks are based on the following:

Availability of transmitter and receiver
Path availability (i.e., LOS, link media exists).

c. Link Capacity. The link type will define the link capacity in terms of maximum messages
transmittable per time period. The model verifies the buffer status (full or empty) and the link
transmission rate to determine throughput capability.

IH-52

! =NNW

d. Link Degradation. Communication links are affected by various environmental effects depending
upon link type. The link degradation will be computed by taking into account the environmental
conditions for all cells which the signal must traverse (radio, microwave, and laser signals only).

13. Command and Control (C2) Node Models

The C2 decisions and processes (DAP) activity and C2 databases interact to simulate the C2 node
functions. The C2 DAP function consists of programmed decision logic which is defined in terms
of rules of engagz-ment which generate messages for transmission to other platforms for the purpose
of neutralizing the threat. Every C2 node will contain a C2 DAP model with which the C2 database
interacts and which causes the generation of messages.

a. C2 Decisions and Processes. The C2 decisions and processes is responsible for sensor input, target
dentification, sensor data correlation and tracking, air situation display, and message generation for

purpose of engaging threats and forwarding air situation information to other C2 nodes as defined
by the C2 platform communication link connectivity list.

b. C2 Received Messages. The C2 decision and processes function receives the following message
from external sources:

Track Messages (from other C2 nodes)
Target Report Messages
Strobe (jammer) Report Messages
Sensor Status Messages
SDI Model Messages
Asset Status Messages
Weapon Status Messages
Engagement Reports from Weapons
Engagement Reports from Other C2 Nodes
Weather Information Messages
Platform Location Messages
C2 Status Messages from Other C2 Nodes
Weapon Effectiveness Messages
ASW Model Messages.

c. C2 Transmitted Messages. The C2 DAP function transmits the following messages to external
sources:

Track Report Messages to other C2 Nodes
Scramble/Intercept Messages
Engagement Messages
C2 Location (platform) Report Message to other C2 Nodes
C2 Status Message (percent saturation, remaining assets) to other C2 Nodes.

M1I-53

d. C2 Decisions and Processes Rule Set. The C2 DAP function are responsible for the following
functions. The decisions are based on C2 database interaction, rules of engagement, weapon
effectiveness, and available resources.

ID Determination/Validation
Threat Assignment
Weapons Allocation
Resource Protection Prioritization
Threat Type
Tracking/Correlation.

14. C2Daase

The C2 database is responsible for maintaining an accurate and current accounting of all threats,
defender assets, and environmental conditions applicable to the simulation. The C2 database must
also interact with the C2 DAP function. A C2 database containing an appropriate subset of the
following information is maintained at each C2 node.

a. Site data for this C2 Platform (as applicable for fixed or mobile platforms): Grid Position, Speed,
Heading.

b. Communication Link List for this Platform Type: Number of Landlines; Medium: Fiber Optic,
HF, UHF, VHF; Characteristics Tx or Rx Destination (if Tx) and/or Source (if Rx) Data Rate.

c. Threat Platform/Threat List: Grid Position, Speed, Heading, Engagement Priority, Weapon
Commitment/Assignment, Type, Confidence of Type, Assets at Risk Confidence, IFF, Queries/
Responses, Threat Summary.

d. Weapon Platform/Weapon List: Grid Position, Heading, Speed, Max Speed, Fuel Bum Rate, Max
Altitude, Max Range, Flight Profile, Weapons Available/Type Number, AAM/ASM, Bullets, Alert
Status (delay to deployment), Fuel/Time Remaining, Target Assignment, CAP/Orbit Time/Location
of Intercept, SAM Batteries, Missile Count Status.

e. Asset Summary Data, C2 Centers, Airbases, Aircraft/Type, SAM Battalions Batteries/Missile
Count, Space-Based Platforms, Sensors, Industrial Centers, Population Centers, Other Defended
Assets, Defense Priority for Each Asset.

f. Sensor Platform List (as applicable for fixed or mobile platforms): Grid Position, Heading, Speed.
Sensor Type, SR, SSR, 3D Radar, ELINT, Space-Based IR/Radar, EO, IR Data Count, Number of
Targets, Types (SR, SSR, etc.) Data, Priority/Confidence Level.

g. Other/Commercial Traffic: Grid Position, Heading, Speed, ID tanker, friendly, commercial,
unknown, etc.), ID Confidence Level.

II-54

h. Nudet Reports

i. Weather

j. Enemy Order of Battle.

15. SDIMod

SDI inputs are pre-formatted messages transmitted to the destination defined by the message at
predetermined times in the simulation. The message may be of the following types: slow walker,
missile attack warning, nuclear detonation, asset warning, and situation assessment messages.

16. ASW Modl

ASW inputs are preformatted message transmitted to the destination defined by the message at
predetermined times in the simulation. The messages may be of the tollowing types: SLCM launch
or submarine location.

3.4.3 Processing Parametrics

To define and refine suitable configurations for the TEF, parametric limits were established. These
limits encompassed the following areas:

Object and model requirements
Data base characterization and sizing
Pre-test inputs and sizing
Mode! loading, data extraction and runtime requirements
Post-test outputs and response turnaround time.

A scenario was postulated to provide processing load numbers and durations. The goal was to have
a realistic attack scenario which stressed all models. The study indicated that there were two basic
types of scenarios, a leading-edge cruise missile attack or a follow-on attack after a ballistic missile
attack. Various levels of warning and readiness could be assumed for either type. The chosen
scenario represents an eleven-hour duration leading-edge cruise missile attack due to its stressing
nature.

3.4.4 Load Analysis

An estimate of the total simulation executable instruction throughput requirements was performed
to support hardware and software architecture and configuration analysis and selection. The models
previously described were used to represent the air defense system architecture and threats. A
representative air defense architecture based on evolution from the current JSS system to an

M-55

advanced system was used as a baseline. The threat loading for the air defense architecture was
determined based on a postulated leading-edge cruise missile attack scenario. The architecture and
attack scenario were chosen to represent the most stressful load on the TEF. The attack scenario was
divided into eleven one-hour time intervals.

3.4.4.1 Interactions Among the Models

Model interactions (i.e., the numbers of aircraft detected and reported by sensors), were assumed to
remain constant throughout each time interval. The number of instructions, frequency of computa-
tion (period) and the total number of object interactions were estimated for each model for all time
slices. The number of instructions executed on a per model basis as well as total instructions for the
entire time slice were computed. A spreadsheet was used to store the data on the models and
interactions and to calculate the totals (attached). The summary of results from two separate loading
estimates is shown in Tables 3-9 and 3-10 (following pages). These tables show the models, time
slices, instruction count estimate and the percentage of instructions per time slice, and the total
instruction count estimate and the percentages over all time slices.

Table 3-9 shows a large proportion of the entire simulation processing devoted to SOCC processing.
Close examination of these numbers revealed a bias due to an assumption that all SOCCs would have
redundant processing for all functions. This assumption tripled the SOCC basic instruction count.

3.4.4.2 Sizing Analysis

This high SOCC load and resulting high total instruction count lead to the conclusion that a
simulation with an average turnaround time of 10 to 18 minutes might not be achievable with:n the
limits of current technology. In Table 3-10, the redundant SOCC processing was eliminated. The
total instruction count was accordingly reduced, and it was determined that a simulation of this order
of magnitude was achievable. The first estimate (with redundant SOCC processing) required a total
compute power in excess of 67 MIPs, whereas the second resulted in an estimated compute power
of 30 MIPs. System architectures based on redundancy of processing in SOCCs or other elements
that require very large processing times could be run, but probably could not achieve the desired
turnaround time of 10 to 18 minutes.

3.4.4.3 Storage Estimates

The memory required for hosting and executing a simulation was derived as follows. The memory
required to hold the data arrays from the scenario file is shown in the following table. The output
buffers for data extraction were estimated at 250 KBytes and the operating system was allocated 1000
KBytes of memory. The total required for a simulation is 35 MBytes.

111-56

wlw
- - 0

*IWO

* ca.N .. N.~.
o uj

111-57

Iw U, - . a

U ~ N N * C N N U

Lo WO A - p

in . p
at S * -

ft ow in * w

00
N w

~~w ~ w w w tv

:1

P W

1-58 N

1. Sizine Anal-i

Object, Environment, and Model Definition 3,585 Kbytes
Terrain Data 140 Kbytes
Input Buffers 40 Kbytes

Subtotal 3,765 Kbytes

The major size estimates of the data structures are:

Event Queue 80 Kbytes
Object Truth 1,200 Kbytes
Sensor Files 10,000 Kbytes
Sensor Message Buffers 3,000 Kbytes
C2 Track Files 12,000 Kbytes
Weapon Track/Detection Files 1,200 Kbytes
C2/Weapon Message Buffers 1,200 Kbytes
C2/C2 Message Buffers 920 Kbytes

Subtotal 29,400 Kbytes

Total 33,165 Kbytes.

3.4.5 Database Approach

Given the size of the experiment, the number of experiments to be run, and the responsiveness
needed, the TEF must have an efficient means to build, access, and control the data. The key to
providing this is a relational database for object definition, model specification, scenario definition,
and post-test data storage. In addition to the relational database and its associated Data Base
Management System (DBMS), three other data structures are key to database sizing; these key data
structures are the actual scenario files needed for test execution, the data extraction files produced
by test execution, and the application source code for the TEF simulation.

3.4.5.1 Relational Database

The approach for estimating the size of the DBMS is based on the following:

a. The categories and number of types of objects provided the basis for estimating the number of
records and some of the elements within each record for the objects.

Ifl-59

b. The model descriptions expanded the elements required for some objects and provided the basis
for estimating the number of records and the number of elements per record for the models.

c. The MOE/MOP definitions and the experimental plan enumerations provided the basis for
estimating the number of records and the number of elements per record for post-test data storage.

3.4.5.2 Object Storage Sizing

The objects are subdivided by group, category, kind, and type. There is an average of 50 parameters
associated with each type. Each parameter requires approximately 4 bytes of storage and would be
an element within a record. The number of elements per record is equal to 50. Definition of each
element requires an overhead of 120 bytes per unique element. Definition of a record requires an
overhead of 1400 bytes for each unique record type. Using these assumptions the estimates for
Object Storage in this DBMS were derived.

Object Storage Sizing

Number of Unique Records 60
Overhead Per Record x 1,400

Subtotal 84,000 bytes

Number of Unique Elements per Record 50
Overhead per Element x 120
Unique Records x 60

Subtotal 360,000 bytes

Number of Elements per Record 50
Total Number of Records x 2,350
Number of Bytes per Element x 4

Subtotal 470,000 bytes

Total Number of Records 2,350
Key Size in Bytes x 96

Subtotal 225,000 bytes

Total 1,139,000 bytes

111-60

3.4.5.3 Model Parameter Storage Sizing

There are ten different categories of models; Environment, Nuclear Effects, Object Motion, Sensor
Environment, Sensor Detection, Communication Links, C2 Nodes, Weapons, SDI Input, ASW
Input. The number and size of the parameters associated with each of the models was estimated and
then multiplied by the number of possible types. The total storage requirement DBMS is 80 Mbytes.

1. Environment-Atmospheric environment parameters storage:

40 bytes/type x 80 types of environmental conditions = 3200 bytes.

75 degrees latitude x 360 degrees longitude = 27,000 one degree cells.

3200 bytes x 27,000 cells x 6 scenarios = 518.4 Mbytes of data storage.
(This data is not held in the DBMS).

The terrain is modeled by a four-minute-by-four-minute grid with two parameters per cell.

The North American continent reaches from 15 00 00 North Latitude to 75 00 00 North Latitude, and
from 45 00 00 West Longitude to 180 00 00 West Longitude.

(60 deg x 15 cells/deg) x (135 deg x 15 cells/deg) = 1.82 Mbytes

1.82 Mbytes x 8 bytes = 14.56 Mbytes.

(Neither this data nor the Enhanced environment or Electromagnetic effects is held in the DBMS).

2. Nuclear Effects-An estimated array of 100 parameters per warhead type is necessary to provide
burst and fireball data parameters to the online model. This estimate is based on past Logicon
experience with similar simulations.

20 warhead types x 4000 bytes = 80,000 bytes

3. Object Motion-Data for defining movement patterns, formations and missions for all mobile
categories is computed as:

64 bytes/event x 20 events/patterns x 10 patterns/object type x 150 object types
= 1.9 Mbytes

4. Sensor Environment-An estimated array of 100 parameters for defining the cell coverage, noise
sensitivity, and environment sensitivity for each type of sensor is necessary.

400 bytes x 50 sensor types = 20,000 bytes

II]-61

5. Sensor Detection-The primary data requirement is to hold the cross-section per object type per

sensor type.

20 bytes/cross section x 120 objects x 50 sensors = 12,000 bytes

There are 100 other detection and reporting parameters per sensor type.

400 bytes x 50 sensor types = 20,000 bytes

6. Communication Links-The main requirement is the connectivity definition and the rules that
determine the behavior of each type of link.

40 bytes/connection x 1677 links
= 67,080 bytes 100 bytes x 40 link types
= 4,000 bytes

7. C2 Nodes-The key data parameters for the C2 models are the decision logic parameters for track
generation, target ID, threat ranking, weapon allocation, and kill assessment. For each C2 type:

80 bytes/rule x 500 rules = 40,000 bytes per C2 type.

Asset, sensor, communication, and other definition data requires about 36,000 bytes per node. The
total data storage would be 1.8 Mbytes.

8. Weapons-The weapons effectiveness and engageability definition data would require about 74
Mbytes.

9. SDI Input-This input consists of an ordered set of events. The time is relative to the initiation
of the ballistic missile attack. This data will not be held in the DBMS.

10. ASW Input-The data for this model consists of the detection zones and report generation time
cycles and delays for the ASW Model. The data size is estimated to be 40,000 bytes.

3.4.5.4 Post-Test Data Storage

The data to be held in the DBMS consists of the computed MOE/MOPs from either run or the set of
runs that provides statistical significance for each experiment/case combination. This data is
estimated to be about 2000 bytes per iteration with from 1000 to 25000 iterations per year, the data
saved in the DBMS must be kept to a minimum.

IIR-62

3.4.5.5 Scenario File Storage Sizing

The estimated scenario file storage size is estimated as follows:

Object Definition 12 Kbytes
Sensor Definition 80 Kbytes
COMM Link Definition 72 Kbytes
Environment Definition 67 Kbytes
C2 Node Definition 1,800 Kbytes
Terrain 14,560 Kbytes
Weapon 15,000 Kbytes
SDI Input File 19 Kbytes
ASW Definition 6 Kbytes
Object Control File 11,520 Kbytes
Location Definition 48 Kbytes

Total Size per Scenario 43,184 Kbytes

3.4.5.6 Data Extraction Storage Sizing

The estimate was based on extraction of the C2 mode data and object position once per minute during
test execution for total of 40 executions. The amount of the data extracted was estimated to be I
Mbyte per extraction; this yields a total of 40 Mbytes.

In addition, the counts used for generating MOEs will be extracted on the appropriate cycle update.
This would amount to approximately 15 Mbytes. The total amount of data produced per run would
be 55 Mbytes. This could be reduced, through data reduction techniques, to as little as 21 Kbytes per
run. This data in turn could be further reduced to one set of data for the number of runs required to
produce statistical significance.

Only the mean, standard deviation, variance, minimum, and maximum values for each MOE are
shared from the set of runs. This is estimated to require about 2 Kbytes for the data. Approximately
1,080 sets of data per year would be stored online in the DBMS for quick retrieval and comparison.
This would result in a minimum 2.16 Mbytes of data per year being added to the DBMS due to post-
test generation of test results.

3.4.6 Parallelization of Simulation Functions

Each of the individual model modules described above that results in object motion (weapons,
neutral, and threat), sensor detection or environmental calculations are subject to parallelization. The
calculations performed are identical for all objects of the same category and parallelization offers the

1IB-63

potential for greatly increasing efficiency by performing parallel calculations on non-interactive
items. In the case of the executive, however feasible parallelization might be, the distribution of
functions must be very carefully weighed in the light of the necessity for simulation repeatability.
The consequence of such analysis might lead to the decision that it would be better to keep it
executing in a non-parallel fashion. The C2 model is likely to be represented by a rule-based process.

In each of the cases, non-von Neumann architecture solutions offer the possibility of achieving a
greater degree of efficiency than nonparallel architectures. However, the system should be designed
specifically for non-von Neumann architectures in order to realize the improved efficiency.

3.4.7 Candidate Host Computer Configurations

Three different NvN architectures were considered;

Class I: Pipelined Vectorized Uni-Processor
Class VI: General Purpose, Multiple-PEs, Shared Memory
Class VI: General Purpose, Multiple-PEs, Message Passing

3.4.7.1 Class I: Pipelined Vectorized Uni-Processor

At the present time, the only computers with the single instruction stream that meet or exceed the 40
MIPS requirement are the true supercomputers as represented by CRAY as well as several other
multi-million dollar computers. Even these machines achieve this throughput only on highly
vectorized problems. Multiflow Computers reports that it is close to releasing its TRACE 28/200
which, they claim, will achieve these performance levels for conventional non-vectorized FOR-
TRAN programs. Multiflow Computers claims that users can expect performance in excess of 50
MIPS. The TRACE 28/200 can be created with a field upgrade of hardware and software from their
current product TRACE 7/200; which, itself, delivers more than 15 MIPS.

A simulation executive based on a uni-processor hardware foundation is considerably simpler to
develop than one based on Class VI NvN architecture because there is no necessity for complex and
complicated synchronization of parallel processes.

3.4.7.2 Class VI: General Purpose, Multiple-PEs/Shared Memory

There is a wide variety of shared memory GPMPE computers available. The marketplace offerings
include: Alliant, Flexible, Sequent, Encore, and Elxsi.

Individual processor performance should exceed 12 MIPS and 1 MFLOP as measured by the half-
precision LINPACK benchmark. Of the currently fielded products, only Alliant, Multiflow, and
Elxsi are able to achieve this performance level.

111-64

Encore, among others, claims to have upward compatible products that can achieve these perform-
ance levels. To indicate future possibilities, Encore is under contract to DARPA to deliver a 1 BIP
mL. 'ne complex, which will contain several 20-CPU Encore machines that will be cross-coupled
using high-bandwidth fiber optic channels.

The Alliant FX series is a currently available, shared memory machine. The FX-40 and FX-80 series
provide a unique architecture of up to eight Compute Elements (CEs) and up to 12 Interactive
Processors. Each CE is capable of approximately 14 MIPS (Whetstone rating) and 2 MFLOPS (half-
precision LINPACK benchmark). Each CE has vector instruction capability. Moreover, CEs can
be ganged together to constitute a computing complex. This mode is supported by a unique compiler
which automaticallly generates"fingergrained" (medium grained) parallel code as well as vectorized
code. A specially patented hardware bus, that Alliant calls a concurrency bus, provides the essential
microsecond level processor synchronization. It is possible to realize 96 MIPS with a single Alliant
FX-80.

The Elxsi 6400 series is also a GPMPE-Shared Memory machine, The Elxsi architecure offers the
possibility of 10 CPU boards which operate in arbitration via a high-speed gigabus using a technique
Elxsi refers to as dynamic load balancing. In other words, the Elxsi operating system decides how
many CPUs to use when ajob is executed. Each 6460 CPU board provides 40 MWHET performance
and is rated at 7 MFLOPS. Elxsi also claims "special" capability to accommodate real-time and
simulation software systems.

3.4.7.3 Class VI: General Purpose, Multiple-PEs/Message Passing

The US Army's Conceptual Modeling Agency (Bethesda, MD) has stated to CSC's High Perform-
ance Computing Laboratory personnel that although it is easy to assume that the message passing
subclass of the NvNACS Class VI machine is not as suitable for the compute-intensive processes
involved in real-time simulation of BM/C31 systems as the shared memory subclass machines, their
experiences do not substantiate that assumption. They admit that it requires a different kind of
programming, but the necessary capabilities for such ..mulation are indeed present.

3.5 SIGNAL PROCESSING APPLICATIONS OF NVN ARCHITECTURES

3.5.1 Signal Processing Generic Definition

Signal processing is the application of algorithms to sampled data from single or multiple sensors for
the purpose of extracting intelligence from the data and/or improving the quality of intelligence that
may be extracted.

Signal processing techniques are applied to many types of signals including:

telecommunication signals (both voice and data)
radar signals

IH1-65

video images (infrared sensors)
acoustic signals (e.g., sonar, speech, music)
seismic signals
medical instrumentation signals (e.g., EKG, ultrasound)
accelerometer data

The processing algorithms are applied for a variety of purposes, such as:

improvement of signal to noise ratio
speech recognition/speech compression
detection of events (e.g., target search)
pattern recognition (discrimination between even.s)
parameter measurement (location, speed, source energy, spectral analysis)
target tracking and surveillance
beamforming (acoustic, radar, seismic)
image processing \medical)
vibration analysis

3.5.2 Signal Processing Problems

The most pervasive problem of signal processing is its computational intensity. In some cases

relatively high 1/0 bandwidths are also required, but computational bandwidth is the predominant
problem.

The problem of high data rates from a large number of sensors is aggravated by the additional
requirement for high precision computation when using the more sophisticated processing algo-
rithms. Advances in signal processing over the past three decades have brought increasing

complexity of the algorithms, ranging from filtering to spectral analysis to adaptive beamforming.
These changes in algorithmic complexity have altered the computational load from a factor of N to
a factor of N2 to a factor of N' (where N is the number of data samples to be processed in a given time
period). In most signal processing applications, the processing load must be handled in real-time.

A common and significant attribute of most signal processing applications is the use of complex
mathematical techniques such as FFT (fast Fourier transform), IIR (infi~lite impulse response)
filtering, FIR (finite impulse response) filtering, and matrix ,perations. This algorithmic common-
ality makes it feasible in many instances to select or to design a system architecture that is suitable
for multiple signal processing applications.

Applying NvN architectures, i.e., multiple parallel or pipelined processors, to signal processing is
not new. In fact, the requirements for signal processing have been a significant driving force in the

development of NvN architectures. However, the system engineering question of which architecture(s)/
hardware are best suited to particular signal processing applications has an equally important

II-66

companion question of what the software development implications are of using a specific
architecture for a particular application.

Having selected an architecture that is characterized by extensive parallelism and/or pipelining, there
remain, . problem of how to make the most effective use of the hardware capabilities through
software. The major steps to be taken toward solving this problem are:

1. Develop operating system(s) that simplify the application program interface to the basic
capabilities of the hardware.

2. Develop a high order language, or new constructs for an existing language, that allow
application programmers to use the architectural features simply and straight forwardly.

3. Develop intelligent compilers/code configurers that have enough knowledge of the
hardware to be able to recognize potential opportunities to utilize the architectural
features. [This has been indicated as a key tool for architecture classes VI. I and Vi.2]

4. Develop libraries of programs and program segments that make use of the hardware's
architectural features; this supports re-use of existing code and reduces the cost of
application development.

5. Develop intelligent debugging tools, having significant knowledge of the underlying
hardware and that can simplify and speed up the process of getting programs into regular
usage.

3.5.3 Use of NvN Architectures in Signal Processing

Nor-von Neumann architectures are already in use in most of the signal processing applications
where computational bandwidth requirements indicate the need and where cost allows. Numerous
pipelined array processors (not to be confused with processor arrays) of the class I type have been
cunmercially available as peripherals to mainframe computers, and have been applied to many
signal processing applications since the early 1970s.

Adaptive beamforming in radar, sonar, and seismic applications has been performed using rhythmic
cellular architectures as well as processor array type architectures. Target tracking applications have
also been performed on associative processor architectures. Processor arrays have also been applied
to speech and image processing. Various multiple processing element (PE) architectures have been
applied to general signal processing, including the application of expert systems technology to signal
analysis.

11- .7

3.5.4 Future Use of NvN Architectures in Signal Processing

The use of neural networks for existing signal processing applications probably will not increase
dramatically in the near future; however, there is some probability that this architectuic might give
rise to totally new signal processing applications over the next decade.

3.5.5 Matching NvN Architecture Classes and Signal Processing Problems

The common usage of certain mathematical techniques across a broad spectrum of signal processing
applications having significant computational bandwidth requirements allows straightforward
porting of many applications to several different architectures. Consequently, any recommendation
of an architecture for a particular application should be based on a consideration of different
applications that could be supported by the recommended system. It should be borne in mind that,
in any given instance, the total performance profile depends as much or more on software as on
hardware.

3.5.5.1 Pipelined Vector Uniprocessors

Many application systems have been built on this architecture, both as general purpose computers
and as special purpose signal processors. While this architecture does not offer the speed
improvements offered by highly parallel architectures, it does yield significant improvements over
traditional von Neumann architectures. In addition, they have the advantages of being lower in cost,
and of being substantially less difficult to utilize efficiently than more highly parallel systems.

3.5.5.2 Rhythmic Cellular

Rhythmic cellular architecture (either systolic or wavefront) is the current preferred choice for real-
time adaptive beamforming applications (radar, sonar, and seismic). This architecture is well suited
to adaptive beamforming applications primarily because the data flow of the process maps directly
into the architecture of the processor, allowing minimal overhead for data movement. Data enters
the processor array only at its periphery. Generally, this direct mapping is an advantage, but it
requires significant effort to partition the processing when the problem size exceeds the processor
array size. This architecture has been used also for other applications similar to signal processing,
such as interference cancellation, model fitting, linear algebra, and DNA sequence comparison. The
primary limitation of this architecture is that, although very efficient for the particular application for
which a given array was designed, there is very little flexibility in adapting the system to another
application.

3.5.5.3 Processor Array

This architecture offers advantages of increased performance by a factor up to the size of the array,
but this can be reduced by the overhead of communicating data between processors. In addition, like

111-68

the rhythmic cellualar architecture, it is difficult to partition a problem when the problem size is
mismatched with the hardware array size. This architecture has been very effectively applied to
applications of beamforming (radar, sonar, seismic) and of speech recognition.

3.5.5.4 Associative Processor

There has been only limited use of this architecture; it has been applied primarily to target tracking
and surveillance subsets of signal processing applications. Additional applications may evolve,
however, in areas characterized by significant database searching as well as signal processing
functionality as, for example, in pattern recognition or in expert system support of command decision
making.

3.5.5.5 Operand Driven

Search of the technical literature did not reveal any applications of this architecture to signal
processing.

3.5.5.6 GP Multiple PE

This rather broad class of architecures has been used extensively in most existing signal processing
applications. Partitioning of the application processes to processors, whether automatically by the
system or explicitly by the application, can be critical to effective use of the capabilities and features
of the architecture. The extensive flexibility offered by instances of the majority of the subclasses
is most useful in developing signal processing algorithms.

3.5.5.7 Neural Network

Search of the technical literature yielded no evidence that this architecture has been applied to signal
processing. Such lack of evidence is probably due to the facts that it is both new and complicated,
and that there are few hardware implementations. This architecture, conceivably, could be applied
to sophisticated tracking/surveillance applications and to speech recognition and processing.

3.5.6 Signal Processing Applications vs. Hardware

Table 3-11 matches NvN hardware to signal processing applications; it also identifies the manufac-
turer or developer of the hardware. The primary source of systems included in this list was the survey
data from Subtask 1. However, some systems not identified in the Subtask 1 survey data were found
in the literature search and were added to the list. Where the table shows simply signal processing
the literature indicates that the systems are being used for signal processing, but gave no more specific
information. Where no application is listed, the literature gave no indication that the systems are
being, or have been, used for signal processing; however, this should not be taken to preclude the
possibility.

II1-69

Table 3-11. Signal Processing Applications vs. Hardware Systems

SYSTEM MANUFACTURER CLASS APPLICATION

Alliant FX/80 Alliant Computer VIA_____nt___/80_ Systems Corp.
Anza-Plus Neurocomputing Hecht-Nielsen
Coprocessor System Neurocomputer VII

ASPRO Loral Systems Group IV tracking

Balance 8000

Balance 21000 Sequent VI signal processing

Boltzman Machine VII paper machine

seismic signal
BSP Burroughs Corp. III processing

Butterfly Bolt, Beranek and Newman VI

CDC Star-100 Control Data Corp. I

CEDAR Univ. of Illinois VI

Celerity 6000 Celerity

CHiP Purdue Univ. VIWashington Univ.

Cm* Carnegie-Mellon Univ. VI

CMOS VLSI Neural Network AT&T Bell Labs VII

Connection Machine Thinking Machines Corp. VI FFTs
seismic signal

Convex C-I XL/XP Convex Computer Corp. VI processing

WUS)ML .Ub3h California Institute VI
of Technology VI

Cray Research, Inc. VI

Cray-I Cray Research, Inc. I

Cyber 205 Control Data Corp. I

Cyberplus Control Data Corp. VI

DADO2 Columbia Univ. VI signal processing
expert systems

DAP Active Memory Technologies III

Data Driven Machine I Univ. of Utah V

111-70

Table 3-11. Signal Processing Applications vs. Hardware Systems (continued)

SYSTEM MANUFACTURER CLASS APPLICATION

ELI Yale Univ. VI paper machine

ELXSI System 6400 ELXSI VI

Encore Multimax Encore Computer Corp. VI

ETA-10 ETA Systems, Inc. VI

FACOM VP-200 Vector Fujitsu, Ltd.
Processing System I

FGCS Univ. of Tokyo

FLEX/32 Multicomputer Flexible Corporation VI

GaAs Systolic Array kCA(GE) II
Beamforming Controller

Galaxy (YH-1) People's Republic of China I

H-P Denelcor VI

Hitachi S-810 Hitachi I

IBM 3081 IBM

IBM RP3 IBM VI

iPSC-VX Intel VI

Matrix-I Saxpy Computer Corp. II seismic/sonar/radar
signal processing

MIT Data Flow Computer MIT V

MPP Loral Systems Group III image processing

MWAP Johns Hopkins APL II signal processing

NEC SX-2 NEC I

NETL Carnegie-Mellon Univ. VII

Neural Phonetic Helsinki Univ. of Technology VII

Nobeyama FX Fujitsu/Nobeyama Radio radio astronomy/
Observatory spectroscopy

NON-VON(1/3) Columbia Univ. VI

111-71

Table 3-11. Signal Processing Applications vs. Hardware Systems (continued)

SYSTEM MANUFACTURER CLASS APPLICATION

speech recognition
Odeyssey Texas Instruments EKG analysis

PASM Purdue Univ. VI

P-NAC Princeton Univ. I1 DNA sequence
_comparisin

PSC Culler Scientific Systems VI

SCS-40 Scientif Computer Systems VI

SLAPP Naval Ocean Systems Center II sonar adaptive
beamforming

STARAN Loral Systems Group IV

STC-RSRE wavefront Stabdard Telecommunications/ radar adaptive
array processor Royal Signals and Radar Est. beamforming

Systeolic Adaptive Beamformer ESL, Inc. sonar adaptive
1n beamforaing

Systolic/Cellular System Hughes Research Laboratories linear algebra/
______________________ _______________________ 1 signal processing

real-time signal
T-ASP Motorola (Canada) Ill processing

Tagged Token Dataflow MIT
Machine MTV

TI-ASC Texas Instruments I

TRAC Univ. of Texas at Austin VI

Ultracomputer New York Univ. VI

Vortex Sky Computer

WARP Machine Carnegie Mellon Univ.

3.6 IMAGE PROCESSING

Image processing has been defined in terms of two categories of processing by S.Y. Kung [Kung
1988]. From the text it is stated that "the research activities dealing with images are now divided into
two disciplines: image processing and image analysis. Image processing consists of enhancement,
restoration, reconstruction and coding, et c. Image analysis, on the other hand deals with extraction
of lines, curves, and regions in images, classification of objects, texture analysis, analysis of moving
objects, and scene analysis. Most image processing tasks are very time consuming. For example,

I1-72

low level operations, such as filtering or enhancement, typically require the order of some tens of
machine instructions per pixel. A typical image obtained from a LANDSAT earth resources satellite
is about 1000 x 1000 pixels/image. This implies a computation requirement of some tens of millions
of instructions per image, not including the computation for any substantive higher level processing.
If such simple low level operations are to be performed at a video rate, say 25 to 30 frames per second
this means a throughput requirement of about a billion instructions per second. In general, most real-
time image processing throughput rates outstrip current parallel architectures. Thus image applica-
tions processing have long been (and will continue to be) a major driving force in the development
of faster and more powerful parallel machines."

Image processing can be broken into two generic categories depending on the source of the data.
These categories include the processing of satellite or aircraft digital downlinked imagery and the
processing of photographic imagery onto a digital format satisfactory for later replay on a digital
image processing system. Each image type requires the later generation of user products for
evaluation of scene content/image enhancement. Due to the complexity of the processing of large
volumes of digital imagery that are downlinked in raw data format from polar orbiters, this category
of bulk image processing will be discussed in detail. Although polar orbiting Synthetic Aperture
Radars will be available in the future and they could constitute a type of imaging platform that would
be best amenable to the use of non-von Neuman architectures they have no proven record of daily
collection of data in volume. (The first such instrument carried on SEASAT failed shortly after
launch. Investigators are still evaluating the data acquired through the one-hundred days of life of
SEASAT. Though these investigations have led to many useful and unique applications for the data
they are limited by the limited quantity of data,) The only system that has a record of daily data
collection and processing is the Landsat production system for Multispectral Scanner System and the
Thematic Mapper system. MSS data have been made available to the user community since 1972.
The TM was first carried on Landsat 4 launched in 1982.

3.6.1 Bulk Image Processing

Satellite image processing involves large volumes of data. Procecssing systems for satellite imagery
are required to perform high speed bulk processing of multispectral imagery data and includes a
variety of functions for image enhancement, analysis, and classification. The Landsat Thematic
Mapper instrument images seven spectral bands simultaneously using one hundred detectors on two
focal planes. Four spectral bands of data in the visible and near infrared are acquired by silicon
detectors on the primary focal plane. Each band is composed of sixteen detectors. Three spectral
bands (data in the mid and far infrared) have their detectors mounted on a secondary focal plane that
is cooled to assure the maximum signal-to-noise ratio for each detector. The thermal infrared band
contains only fourdetectors. Image data are acquired through a combination of satellite motion along
track and the oscillation of a primary mirror (7 hz) to gather cross track information. Data are
multiplexed and packetized using the on-board computer interface prior to downlink of a bit serial
data stream that must be modified for image processing. Landsat 4 TM was the first instrument built
by NASA that merged the satellite pointing data, mirror scan profile, and other hcusekeeping data

111-73

with the video data stream. The coupling between the satellite motion, the mirror oscillation, and
deviations from perfect satellite orbit trajectories requires that mathematical models be constructed
to remove distortions induced by the total system.

Remote sensing technology continues to advance in its sophistication and technological difficulty
in data processing. Two examples will be given of the future problems faced in these areas for the
sake of illustration.

The first example concerns the use of linear or rectangular arrays of detectors. In this type of system
the oscillating mirror is removed from the optical system. All data are acquired through either linear
or rectangular arrays of detectors that must be periodically and systematically refreshed prior to the
receipt of the next pixel of information. The SPOT satellite is the first commercial operational system
of this type that uses this type of technology. Sensor fabrication technology trends indicate that there
will be many new systems like the SPOT Image Corporation's satellite in the future.

Figure 3-3 illustrates the general trend of sensor packing and the number of pixels per scene to be
expected in the 2000 A.D. time frame [Kostiuk and Clark 1984]. Tables 3-12 and 3-13 present some
of NASA's projections in this arena for the same time frame. The number of pixels for the NASA
projected Multispectral Linear Array are larger by two orders of magnitude when compared with
Landsat TM. When the document was published in 1984 there was a lower limit on the pixel size
by law. Since then there has been a change in the law. By presidential directive it is now possible
for any remote sensing operation in the USA to acquire, process, and distribute data with pixels as
small as 5 meters on a side. This increases the quantity of information by another factor of 36. (Here
the TM pixel is given as a 30 meter square. It would take 36 of the 5 meter pixels to fill a single TM
pixel). Steps to implement this type of technology are underway for Landsat 7.

When using arrays the first step of data processing becomes one of handling a gain and an offset for
each detector of the array. This requires a lot of memory just for the purpose of the radiometric
correction. Consider, for example, a set of linear arrays that replace the detector/mirror combination
for Thematic Mapper. This would require that there be on the order of 6200 pixels per array per band.
Thus there would be the requirement to carry 7*6200 = 43,400 pairs of gain and bias data parameters.
These 90,000 words would be required for a nominal calibration. Using Landsat gain and bias
adjustment parameters for each detector for postlaunch upgrades would introduce the requireement
for an additional 90,000 words as would any post launch recalibration.

New detector materials and the use of linear or rectangular arrays make the problem more difficult.
For these arrays it has been determined that a better calibration can be achieved through use of a
piecewise linear fit to the digital count versus radiance curve. Each piece of this fit introduces on the
order of 90,000 words for calibration. Evidently this leads to a trade off between the memory size,
the cycle time, and the radiometric accuracy calculations.

111-74

1010

Full MLA

10 9 ceneMLA10 8

M SS Si gl
107

an

MSS

10 6

1980 1990 2000

Processing Requirements for the Future (LANDSAT)

Table 3-12. Multispectral Linear Array Potential Sensors

Pointable High Resolution Imaging Radiometer (PIMIR)

Supports experiements requiring the highest spatial resolution, off Nadid viewing,
modest field-of-view, and high spectral resolution with bands def'ed prior to flight

Pointable Imaging Spectrometer (PIS)

Supports experiments requiring in-orbit selection from many high resolution spectral
bands, moderate spatial resolution, small fieldof-view

Moderate Field-of-View Imaging Radiometer (MFIR)

Supports experiments requiing 3-5 day coverage of large areas with modest
spatial reso lution and a limited number of spectral bands

Wide Field-of-View Imaging Radiometer (,VFIR)

Supports experiments requiring 1-2 day coverage on large areas with low spatial and
spectral resoltion

Thematic Mapper (TM)

This sensor has flown on LANDSAT 4 and is shown for reference purposes

11I-75

Table 3-13. Multispectral Linear Array Potential Sensors' Performance

PHRIR PIS MFIR WFIR TM

Field-of-View (1cm) 60-180 10-30 200-800 1000-2000 185

Instantaneous F-o-V
VIS/NIR 5-20 30-60 50-200 300-600 30
SWIR 1040 30-60 100-400 300-600 30
MIR 20-80 60-120 200-800 300-600 -
TIR 40-160 60-120 400-2000 300-600 120

Spectral Resolution
VIS/NIR 20 10-20 100 200 80
SWIR 20 10-20 100 200 200
MIR 100 50-100 200 400 -
TIR 100 50-100 500 1000 1200

Number of Bands Available
VIS/NIR 8 30-6 3 3 4
SWIR 8 100-200 2 2 --
MIR 4 8-16 2 2 2
T1R 4 40-80 2 2 1

Number of Bands Transmitted TBD TBD All All All

Data Rate (Mb/s) 300 TBD <30 <10 85

Pointing Capability Yes Yes No No No

Complexity High Very High Moderate Low High

The second example involves the implementation of this type of system for the polar platform.
Consider the High Resolution Imaging Spectrometer (HIRIS). This system uses 192 channels rather
than the 7 bands for TM. The downlink data rate is expected to be on the order of 300 Mbytes/sec
roughly 3.5 times faster than that used by TM. Use of one-half the capacity of this system on a
constant basis is expected to generate data volumes that exceed those of TM by approximately a
factor of three. Obviously the data rates and volumes are increasing quickly the area detectors
planned for HIRIS will require over 5 megabytes of memory for their calibration. At this time there
is no assured methodology for processing this data stream. Therefore, non-von Neumann architec-
tures are under consideration.

3.6.2 Potential Futures Uses for NvN Architectures

One potential use of NvN architectures could be for the calibration of the 100 detectors ..Each
detector could have its own processor set. Data could be pipelined into processors where a multiplier
and adder for each detector could be applied to pixels as they crossed the appropriate time boundary.
(This could be done on a per band basis or on a per line basis). Geometric manipulation requires
significant use of matrices. If the data were properly rasterized the problems inherent in the slow
throughput for geometric processing would be diminished.

111-76

Some NvN architectures are particularly suited to the extraction and processing of GCP. These
include Fourier transform machines, neural network machines, and other pattern recognition schema
that are compatible with NvN architectures. However, this area should be approached with some
caution. At the most recent conference on Artificial Intelligence and Expert Systems hosted by the
Central Intelligency Agency (October 1988) it was noted that when over 1000 nodes were used in
the pattern recognition task the computer was given a capability roughly equivalent to that of a
common housefly. This is the state of the art today. In order to considerpattern recognition in context
of human vision it will be required that the number of nodes be more than 10,000,000. In addition,
it was pointed out at the conference that NvN architectures such as neural networks would have
excessive compute times as the number of connections increases. Some researchers stated that in
order to do their processing they used Cray computers in unique configurations. The complexity of
the task of pattern recognition becomes even more interesting when multispectral data are used.

3.6.3 Matching Architectures

None of the existent architectures have yet been proven able to ingest the raw data in a bit serial format
and process to a final product. Most of the architectures given deal with the data after it has been
processed to a medium (CCT) that is compatible with ingest and data manipulation. However, there
are candidate architectures for the future that are under study for multiple applications of NvN
systems. For example the hybrid system being installed by the U.S. in Alaska for the processing of
SAR data is a partially NvN architecture. It is simpler than that required for Landsat since it does
not deal with multiple spectral bands. Normally SAR systems deal with one or at most two
frequencies and polarizations. Each could be pipelined separately as required but must be made
compatible through preprocessing with the pertinent NvN architecture.

The Aliant system is under consideration by JPL for the processing of HRIS data. It is their
conjecture that this type of system can generate data at the required rate with the minimum of risk.
Since their first PDR they have had to scale back somewhat from their original concept of using seven
systems of this type. Nonetheless, they are progressing with this as one of their baseline system
configurations.

Systems such as neural networks must be very carefully scrutinized. The human eye contains up to
one million neurons [Cornsweet 1970]. These are currently thought to be cross-strapped to one
another in localized bundles as required for pattern recognition tasks. Emulation of these neurons
through neural networks is a new technology for hardware and software engineering. The
Connection Machine and other configurations that use multiple emulated neurons can at present be
used only for the simplest of pattern recognition tasks. There has been no way for these systems to
function with over one million nodes and one million factorial connections within the existent state
of the art.

Table 3-14 evaluates NvN systems for image processing.

111-77

Table 3-14. Evaluation of NvN Systems for Image Processing

MACHINE ENHANCEMENT RESTORATION ANALYSIS

Alliant Yes MIMD Yes
Anza-Plus Marginal Marginal
ASPRO No SIMD No
Boltzman Machine No ? Marginal
BSP Marginal SIMD Yes
Butterfly Yes MIMD Yes
CSC Star 100 No SIMD No
CEDAR No MIMD No
Celerity No SIMD No
CHiP No MIMD No
Cm* Machine No MIMD No
CMOS VLSI No ? No
Connection Machine Yes SIMD Yes
Convex C-I Yes MIMD Yes
Cosmic Cube Marginal MIMD Marginal
Cray Marginal MIMD Marginal
Cray-I Marginal SIMD Marginal
Cyber 205 Marginal SIMD Marginal
Cyberplus Yes MIMD Yes
DADO2 Yes SIMD/MIMD Yes
DAP Yes SIMD Yes
Data Driven Machine No ? Yes
ELI No ? No
ELIXSI ? MIMD
Encore Multimax Marginal MIMD Marginal
ETA-10 Yes MIMD/(M)SIMD Yes
FACOM No SIMD No
FGCS ? ?
FLEX/32 No MIMD No
Galaxy No SIMD No
HEP No MIMD No
Hitachi Marginal SIMD Marginal
iliac IV No SIMD No
iPSC Marginal MIMD Marginal
Matrix-I Yes SIMD Yes
MIT Dataflow No MIMD No
MPP Yes SIMD YesNEX SX-2 Marginal SIMD Marginal
NETL No NA No
Neural Phonetic No NA No
NON-VON Yes MIMD/(M)SIMD Yes
PASM No SIMD/MIMD Yes
STARAN Yes SIMD Yes
Systolic Adaptive No MIMD No
Systolic Cellular Marginal SIMD/MIMD Marginal
T-ASP Yes SIMD Yes
Tagged Token No MIMD No
TI-ASC Marginal SIMD Marginal
TRAC Yes SIMD/MIMD Yes
Ultracomputer No MIMD No
WARP Yes MIMD Yes

111-78

3.7 GENERAL PURPOSE USE OF NVN MACHINES

3.7.1 Use in Development, Prototyping, and Testing of Hardware and Software

This section discusses the use of NvN architectures in accomplishing the following:

* Developing Production-Grade Software

* Prototyping Software Systems

" Testing of Hardware and Software.

The technical literature indicates that the overwhelming majority of reported usages of NvN
machines in developing software have come from the scientific and engineering computation arena;
FORTRAN is the most commonly used language for such computations, although there is increasing
usage of C and Pascal. The literature does not indicate the use of NvN machines for developing
software that is applicable to the BM/CI domain.

There are no reported instances of using NvN machines for the prototyping of software systems.
However, the Al community makes heavy use of the prototyping paradigm, and it is therefore
possible to consider the development of Al production systems on various NvN architectures as
examples of prototyping. There are no known examples of using NvN machines as a hardware base
for system(s) that support/facilitate the prototyping of real-time systems or other complex applica-
tions that are typical of the BMIC 3I domain.

There are no literature references to usages of NvN machines in the testing of hardware and software.

Although there has been little or no use of NvN architectures for developing software of production-
grade other than in the scientific and engineering communities, or for prototyping softwarc systems,
or for the testing of hardware and software, some of the NvN architectures, but particularly the Class
VI machines, would be excellent foundations for a comprehensive system and software engineering
environment, such as that needed to support the development of BM/C31 applications.

A comprehensive system and software engineering environment (S/SEE) that is suitable for
developing BM/CI applications must be supported by a database which will grow from a moderately
large size to an extremely large size over the course of a software development cycle, during which
the S/SEE will have to support all three task types mentioned in the first paragraph above.

The S/SEE's very large database would be distributed over multiple storage devices, and the
responsibility for managing particular devices, or sets of devices, could be assigned to different
processors within an NvN machine instance. Managing the S/SEE database would, very probably,
be greatly simplified if the data were distributed across the sets of storage devices according to the

111-79

various views about the data that are characteristic of the different job-related roles in a software
development community. For example, the requirements engineer, the system design engineer, the
software design engineer, the programmers, the test engineer, and the project management staff all
have rather different views about the contents of the database. A Class VI NvN machine would be,
perhaps, a nearly ideal foundation for the S/SEE.

3.7.2 Problem Domains to Which NvN Architectures are Applicable

There are no problem domains to which all seven classes of NvN architectures are "best" applicable.
Their very different natures makes their applicabilities very different. To a great extent, the
discussions in Section II of this report have dealt with the issue of domain applicability; therefore,
this section will present only a top-level summary.

Class I NvN machines have the broadest applicability because they are very similar to TvN machines,
which have been used for every conceivable kind of computational or data processing job. The vector
capabilities of this architecture are very commonly applied to tasks such as seismic modeling, and
fluid dynamics.

Class II NvN machines are best applied to algorithms that perform regular, predictable calculations,
such as matrix operations involved in signal processing. In machines of the wavefront subclass, the
global synchronizing clock (characteristic of systolic machines) is replaced by dataflow principles.
Reported applications include radar and sonar signal processing, nucleic acid sequence comparisons,
and linear algebra.

Class III machines are generally applied to the same kinds of scientific and engineering applications
to which Class I machines are applied. The bit-plane-oriented subclass.order are particularly suitable
for signal processing; other reported applications include:

* satellite imagery and data processing
" numerical analysis
* Monte Carlo simulations
* solving partial differential equations
" nuclear energy modeling
" seismic data processing
• structural analysis
0 economic simulations.

Class IV machines are most appropriate for applications involving contents-based searches of large
databases. These machines have been used for tracking and surveillance, cartography, image
processing, and signal processing.

111-80

C'ss V machines are still used primarily in research laboratories. The dataflow principles-
enabiing instructions when all operands needed for the instruction have been made available-have
been applied to systolic architectures to create a variant architecture, called wavefront machines.

The set of Class VI machines covers a broad spectrum of architectural featuxes. It is highly likely
that Class VI machines will be used for virtually every kind of application. Within the BMIC3I
domain, the first applications to which these machines will be applied are tracking and surveillance
and large database management. Class VI, together with Class I, machines will likely become the
workhorses of the BM/C'I arena.

Reported applications for Hypercube Topology with PE-to-PE communications include: astrophys-
ics, quantum chemistry, fluid dynamics, and structural mechanics.

Reported applications for Ring Topology with PE-to-PE communications incluae: digital signal
processing, and scientific and engineering computation and data processing.

Reported applications for Tree Topology with PE-to-PE communications include:

• AI production systems
" database applications
• mathematical and scientific applications
• image and signal processing
• speech recognition.

Reported applications for Reconfigurable Topology with PE-to-PE communications include:

• simulations
" Fast Fourier Transform-based computations
* image processing
" various Al applications.

Reported applications for Bus Interconnection, PE-to-Memory communications include:

* simulations
" seismic data processing
• varous aerospace applications
• image and signal processing.

Reported applications for Direct Memory Access Interconnection, PE-to-Memory communications
include:

a wide variety of scientific and engineering applications

111-81

" simulation and modeling
* numerical analysis.

The applications that have been reported for Multistage Interconnection Network, PE-to-Memory
communications architectures indicate that these machines are intended to be, and are being used as,
general purpose machines.

Class VII machines are found primarily in academic and industrial research and development
laboratories. The concepts of neural nets are still so new and strange that it is not possible to make
any accurate predictions about domains to which they might be applied. The reported applications
include:

• speech recognition
• associative memory processing
• alphanumeric character recognition.

III-82

CHAPTER IV. SOFTWARE ENGINEERING FOR NON-VON NEUMANN ARCHITEC-
TURES

4.1 SOFTWARE ENGINEERING ASSESSMENT

To provide a framework for discussion of the current state-of-the-art of software tools and techniques
within the context of Non-von Neumann architectures, one must first consider the concept of a
"programming environment".

A programming environment is a set of tools used to support program development. Although this
description is (of necessity) vague, it is not ambiguous. In particular, given an architecture, a
language, and a type of problem, the desirability of a tool with some specified functionality can be
determined. For example, if the programming language were interactive (e.g., PAR-LISP) an
interpreter would be desirable, whereas the need for an interpreter would be questionable for a
language such as parallel FORTRAN. Any tool, of course, must provide some functionality. To
further structure this analysis, any particular tool will be analyzed within the context of the software
development life cycle. An ideal programming environment would provide a user with a homoge-
neous interface to a set of tools aiding in program development through the entire software life cycle.
In this manner, it will be possible not only to categorize available tools and tools under development,
but will also be possible to define tools that are needed because of the role they could play in helping
to automate software development.

Although much work is being done on models of software development, the following high-level
components are common to all software development life cycles: requirements analysis, design,
coding and unit testing, integration and test, deployment, and maintenance. These components
("phases") may be related to each other in different ways (as in, for example, the "waterfall" or
"spiral" model), but they remain constant constituents of any life cycle. Indeed, the relationships
defined and/or permitted between phases determines the particular life cycle model or methodology.

The purpose of each phase is as follows:

Requirements analysis--This includes a systematic review of the real and perceived needs for
information and the definition of the system to be analyzed; a detailed study of the administrative and
operational systems in an organization, and the specification and gathering of the information
necessary to fully comprehend and solve the problem under consideration; the organization and
documentation of such information; the identification of alternative methods of approaching the
solution and the feasibility thereof; and the logical specification of the major functions and
subfunctions of the software system and their relationships.

Design-This is a phase intermediate between requirements analysis and coding and unit testing.
The results of the requirements analysis phase (which is at a high logical level) are here brought down

IV-I

to a more detailed level, providing a description detailed enough to allow programmers to implement
the proposed solution. It should be noted that the boundaries between the requirements analysis
phase and the design phase are fuzzy, with some logical specifications generated during the analysis
phase being sufficiently precise to allow implementation. In general, however, for large, complex
software systems, the analysis phase is at too high a logical level to permit implementation. In
general, one may say that the requirements analysis phase results in a logical specification ("what"
is to be done) while the design phase results in algorithmic specifications ("how" things should be
done).

Coding and unit testing-The implementation of code for software systems components, including
a thorough debugging of the components. This phase implements the algorithms of the design phase
into the designated programming language, under tl.e constraints imposed by the particular language
and the hardware upon which the program is to be executed.

Integration and test-The integration of the various components as implemented in the prior phase,
and extensive testing of the total system.

Deployment-The deployment of a developed and tested complete software system into the field
for everyday use.

Maintenance-The maintenance of a deployed system, including bug fixes, enhancements, and user
support.

Various documentation may be required for each phase, both within the phase and between phases.
Strictly speaking, however, such documentation is not part of the development life cycle but is an
addition to it to ensure proper and complete understanding of the various phases and of the software
system as a whole. Note that DoD-STD-2167 and 2167A do require such documentation. The
requirement of documentation is to satisfy a need for communication, both among participants within
a phase and between participants of different phases. Such communication, is not, part of a particular
methodology. This is analogous to the situation with respect to "traceability". Traceability is not
a requirement of a high-level model of a life cycle, but of the instantiation of a particular
methodology. Both documentation and traceability tools are very desirable, but this difference
between a high-level model of a life cycle and a particular methodology must be kept in mind.

Different models of the life cycle incorporate the above phases differently. For example, DoD-STD-
2167 includes both preliminary design and detailed design as separate components of the software
development life cycle. The above phases are life cycle components at an appropriate level of detail
for the study undertaken for this report. In particular, they can be refined and/or partitioned into
components (as in 2167) or taken as the highest-level partitioning of any arbitrary life cycle, i.e., any
life cycle methodology must include these phases. By considering the software development life
cycle from this vantage point, the potential automation of the life cycle for non-von Neumann
machines can be analyzed independently of any particular life cycle methodology. Such a vantage

IV-2

point excludes the interrelationships of the phases: each phase must be executed in full, without
knowing the details of the interrelationships of the phases, although a phase may be partially
completed before another phase is begun, that latter phase providing feedback to a prior phase. Such,
of course, would occur in the course of rapid prototyping or the development of AI-based software
systems. Such a high-level view also is amenable to such alternative models of software development
methodologies as the spiral model by the appropriate definition of these inter-phase relationships.

Within each phase, those tools which would support the automation of that phase may be defined,
under the assumption that inter-phase communications are not under consideration for automation
at this stage. The particular tools necessary to completely automate the life cycle, including inter-
phase linkages, would be a function of the particular software life cycle methodology to be
implemented. Again, by separating the phases as above, this issue can be deferred with no effect on
the analysis to be performed in this report.

4.1.1 Life Cycle and NvN Architectures

Examination of the software life cycle phases, independent of a specific methodology, indicates they
are applicable to any software development effort. At this level of abstraction, the software life cycle
phases are also applicable to software development for NvN architectures. Introducing NvN
machines into software development efforts may cause the scope of a phase's task to change; but,
the purpose of each life-cycle phase should remain unaffected.

Class VII, Neural Network, machines represent a potential anomaly to the software development life
cycle model. The limited amount of data on "real" neural network machines precludes any final
conclusions. In theory, neural network machines are trained, not programmed, to perform a specific
task; hence, there is no software that needs to be developed for a neural network to perform its task.
However, neural networks will probably be a component of a larger system and perform a specific
function; so, software will need to be developed to support the inclusion of a neural system. In the
future, development of neural network systems will probably consist of selecting training sets and
choosing a learning methodology. Therefore, the following comments may not apply to machines
in Class VII.

In general, the greatest effect NvN architectures introduce into a system is increased complexity. For
this reason, NvN systems should be selected based on performance requirements. Traditional von
Neumann computers employ essentially the same architecture independent of manufacturer. Design
and implementation decisions can greatly impact performance; however, introducing the same effect
on any von Neumann machine will result in similar performance characteristics. For NvN machines
this is not necessarily the case, implementing the same algorithm on different architectures can have
a significant effect on performance. Thus, an evaluation of the life cycle phases assumes that the
activities will be identical to those for von Neumann machines, and discusses potential areas of
increased complexity.

IV-3

Requirements analysis--The purpose of requirements analysis is to completely define and analyze
the requirements of a system. The generic task of understanding a problem and specifying what needs
to be accomplished is applicable to any software development effort. A common element of
requirements analysis is to perform feasibility studies, and make recommendations. A common
technique used to perform this task is prototyping potential solutions. NvN architectures could add
complexity to prototyping and feasibility andysis. Potential problems with simulating processor-
to-processor communications or memory bottlenecks caused by multiple processor systems will
make prototyping more difficult.

Typical tools that one might desire for performing requirements analysis are problem definition
languages, interactive/expert feasibility analysis tools, data and process modeling tools, prototyping
tools, consistency checkers and completeness checkers. Such tools would all be useful in
requirements analysis for NvN systems. Modeling and prototyping tools would need to account for
NvN architectures.

Design-The purpose of the design phase is to produce a complete detailed design, or blueprint, for
all software development. NvN architectures could impact i- tivities associated with this phase of
the life-cycle. A detailed design includes selection of algorithm(s) and implementation language(s),
two key aspects in determining system performance. The potential problem of determining an
algorithm's performance on a previously untested architecture is difficult. Improper algorithm
selection could reduce performance significantly.

Useful tools for performing design are data flow analysis, PDL processors, alternative design impact,
performance analysis estimators, and simulators. Such tools would be useful for NvN architectures
and would have to account for NvN machines in functionality.

Coding and unit test-The purpose of the implementation phase is to code and unit test all the
software modules specified in the detailed design document. In addition to the increased complexity
introduced by NvN architectures, the definition of a code unit must be expanded. A common
technique used to implement algorithms on NvN machines involves replicating a code segment and
distributing data among available processors. This technique often requires these replicated code
segments to communicate, and hence, unit testing is more complex. The complexity is increased by
introducing potential timing errors and a non-deterministic order of events.

Commonly used tools for coding and testing are languages, compilers, linkers, editors, optimizers,
test generators, and debuggers. Such tools are useful for NvN machines; however, each tool would
probably have to be developed for a specific architecture or machine.

Integration and test-The purpose of testing is to verify that a completed system satisfies the
specified requirements. There should be no effects from NvN architectures on this phase of the life-
cycle, other than adding complexity by including multiple processors.

IV-4

Typical tools that one might expect for integration and test are test case generators, diagnostic tools,
performance analyzers, static analyzers and output comparators. Such tools are needed for NvN
systems.

Deployment-Deployment of software systems for NvN architecture should be essentially identical
to deployment for standard von Neumann systems. One potential problem could arise if the
development hardware is not identical in number of processors and PE-to-PE communications
bandwidth to that of the deployed hardware. Differences in these components, or other components,
may have detrimental effects on system performance.

Maintenance-The purpose of the maintenance phase is to correct any detected errors or inconsis-
tencies and enhance an existing systems functionality, as required. NvN architectures introduce a
degree of complexity to this phase. Side-effects of altering a single code-fragment could alter timing
or introduce inconsistencies in remote processors. Again, this is due to the potential complexity of
software on NvN machines, which can have concurrently executing processes on potentially remote
processors.

Useful tools for maintenance are similar to the tools needed for coding and unit test; languages,
compilers linkers, editors, optimizers, test generators, debuggers, diagnostic tools, performance
analyzers, static analyzers and output comparators. Such tools are useful for NvN machines;
however, each tool would probably have to be developed for a specific architecture or machine.

As the survey information in section 4.2 shows several tools are under development which automate
some aspect(s) of a life cycle phase. A proliferation of tools are for the coding and unit test phase
of the life cycle. Tools such as compilers, operating systems, languages and debuggers are the most
common tools under development.

As stated previously, the purpose of each phase of the life cycle is expected to remain unchanged,
while specific tasks in a phase will be extended to account for NvN architectures. The automation
of such tasks in each phase will require the development of tools that account for NvN systems. As
methodologies evolve and inter-phase dependencies are defined, the impact of NvN systems might
be more apparent.

Two research areas that include several tools under development are programming models (e.g.,
LINDA and Paralation) and graphics oriented programming tools (e.g., SCHEDULE, CODE and
CODE UCG). Such tools attempt to integrate the design and implementation phases of the life cycle.
The close association between architecture and algorithm on performance might require a tight
interaction between the design and implementation phases. A possible trend for NvN machines
might be a tight coupling of these two phases for the development of efficient, high performance
algorithms.

IV-5

4.2 SOFTWARE ENGINEERING TECHNOLOGY ISSUES

This section discusses software engineering technology issues that are applicable to NvN architec-
tures. Information reviewed was obtained through literature surveys, discussions with vendors, and
discussions with users, particularly users in academia. The current focus in NvN software
technology is on tools that automate some aspect of the application development process. Section
4.2.1 presents the information gathered during the survey of software engineering tools for NvN
architectures. Section 4.2.2 presents an analysis of the collected data. Existing software tools are
examined for their applicability to NvN architectures and to the development of application
programs. The survey information includes the current status of state-of-the-art software tools for
NvN architectures.

4.2.1 Software Engineering Tools for NvN Architectures

The survey unveiled work in the following areas: operating systems, code optimization tools,
programming languages, debuggers, performance monitors, programming models, and hardware
simulators. These areas of work comprise the majority of research in NvN computing software tools,
and therefore, are the subsections in this report. Many of these tools could be incorporated into a
programming environment. A few research institutions have put together tool sets that could be the
core of a programming environment.

4.2.1.1 Operating Systems for NvN Architectures

An operating system provides a foundation upon which a software engineering environment can be
developed. The technical literature clearly indicates that UNIX is becoming the operating system
of choice for NvN machine users. Table 4-1 identifies operating systems used on various NvN
machines of various architectures. Thirteen of the twenty-five operating systems presented are based
on UNIX.

Cosmic Environment and Reactive Kernel-The Reactive Kernel is a portable multicomputer
operating system developed at the California Institute of Technology. The Cosmic Environment is
a portable host run-time system for use with the Reactive Kernel. The Cosmic Environment provides
a set of processes, utility programs, and libraries to support communications between host and node
processes. The Reactive Kernel node operating system supports multiprogramming, message-driven
process scheduling, storage management, and system calls for message passing. Together they
provide uniform communication between processes independent of the node on which they are
located. Currently, the Cosmic Environment and Reactive Kernel are available on Symult and Intel
systems.

MACH-MACH was developed at Carnegie Mellon University to support parallel processing.
MACH is an operating system designed for parallel architectures. MACH supports asynchronous
processes through multiple threads of control. Semaphores are supported to provide concurrent
processes a synchronization mechanism to pass or share information.

IV-6

Table 4-1. Matching Machine Operating Systems to Literature Citations
OPERATING SYSTEM MACHINE NAME LITERATURE CITATION

Armstrong O/S Armstrong Multicomputer [Rayfield, et al. 1988]
Chrysalis BBN Butterfly (Miller 1988]
MACH BBN Butterfly [Thomas 1988]
Concentrix Alliant FX/8 [Miller 1988]
COS, UNICOS Cray X-MP/4 (Miller 19881
DYNIX Sequent [Sequent Computer]
EMBOS ELXSI System 6400 [Miller 1988]
MMOS FLEX/32 Multicomputer [Miller 1988]
PASMOS PASM (Siegel 1987]
PEACE Supemum [Schroder 1988]
Psyche BBN Butterfly [Scott 1988]
Sprite SPUR (UCB) [Ousterhout 1988]
Reactive Kernel Symult 2010 (Athas and Seitz 1988]
TOS T-ASP [Lang, et al. 1988]
Trollius Transputer [Cornell University)
Uniform BBN Butterfly [Thomas 1988]
UMAX Encore Multimax [Miller 1988]
UNIX ASPRO [Miller 1988]
UNIX Convex [Convex Computer]
UNIX ELXSI System 6400 [Dongarra, et al. 1987]
UNIX ETA-10 (Dongarra, et al. 1987]
UNIX System V FLEX/32 [Dongarra, et al. 1987]
Xylem CEDAR (Miller 1988]

MMOS-MMOS was developed by Flexible Computer Corporation to support real-time applica-
tions on its shared memory NvN architecture computer. MMOS provides semaphores for synchro-
nizing concurrent processes through operating system calls. These operating system calls are
supported directly by the Flex/32 hardware.

PEACE-Process Execution And Communication Environment (PEACE) was designed and built
for the Supernum supercomputer. PEACE is a process-oriented operating system for message
passing processor-to-processor communication architectures.

Psyche-Psyche attempts to provide a high-performance operating system to support a wide variety
of non-uniform memory access (NUMA) machines. The research is conducted on a BBN Butterfly
computer. The Psyche model assumes that shared memory and message-passing are relatively equal
with respect to usability, with the application dictating which is more appropriate. Four basic
concepts comprise the Psyche model:

1. realm--data and access protocol
2. thread--control flow and scheduling
3. protection domain-access relationships
4. keys and access list--controls access to processes.

Trolius-Trolius was developed at Cornell University and is intended for MIMD architectures.
Trolius is a high level operating system that attempts to provide a consistent development
environment for application development. Trolius provides an interface between a computer's
operating system and application programs through I/O and communications systems calls.

IV-7

4.2.1.2 Code Optimization for NvN Architectures

Developing applications programs for NvN machines in a particular high order language (HOL)

requires compilers that can exploit the architectural feature(s) that characterize an NvN architecture

class. Table 4-2 identifies conventional HOL compilers that either restructure sequential code into

parallelized sequences or that handle compiler directives that provide for parallel operations. Table
4-3 identifies code restructuring tools that aid in transforming FORTRAN 77 to a parallel form of
FORTRAN, or some intermediate representation of a program acceptable to a compiler (e.g.,
compiler directives inserted for a FORTRAN compiler).

Table 4-2. Available Optimizing Compilers

LITERATURE

MACHINE NAME LANGUAGE CITATION

Alliant FX/8 C [Dongarra 1987]
Alliant FX/8 FORTRAN [Argonne 1988]
Alliant FX/8 PASCAL [Dongarra 1987]
Amdahl VP-E Series FORTRAN [Argonne 1988]
Ardent Titan- 1 FORTRAN [Argonne 1988]
ASPRO FORTRAN (Miller 1988)
ASPRO OPS-83 [Lott 1987]
BBN Butterfly C, LISP. FORTRAN [Miller 1988]
CDC CYBERPLUS FORTRAN [Dongarra 1987]
CDC Cyber 205 FORTRAN [Argonne 1988]
CDC Cyber 990E/995E FORTRAN [Argonne 1988]
Cedar FORTRAN [Miller 1988]
Celerity 6000 FORTRAN 77 [Miller 1988]
Connection Machine C. LISP [Hillis 1985]
Convex C Series C [Miller 19881
Convex C Series FORTRAN [Argonne 1988]
Cray Series FORTRAN [Argonne 1988]
Cray Series FORTRAN [Argonne 1988]
Cray X-MP C [Miller 1988]
Cray X-MP FORTRAN [Argonne 19881
Cray X-MP FORTRAN [Myers 1986]
Cray X-MP PASCAL [Miller 1988]
Cray-2 FORTRAN [Argonne 1988]
DADO2 C. LISP [Stolfo 1987]
DAP FORTRAN [Miller 1988]
Encore Multimax C, FORTRAN 77 [Miller 1988]
Encore Multimax PASCAL [Dongarra 1987]
ETA-10 FORTRAN [Argonne 1988]
FACOM VP-200 FORTRAN 77 [Miller 1988]
FLEX/32 C. FORTRAN, RATFOR [Dongarra 1987]
Gould NP1 FORTRAN [Argonne 1988]
Hitachi S-810/820 FORTRAN [Argonne 1988]
IBM 3090/VF FORTRAN [Argonne 1988]
IBM 3090/VF FORTRAN [Liu 1988]
Intel iPSC C, LISP [Miller 1988]
Intel iPSC/2-VX FORTRAN [Argonne 1988]
Intel iPSC PROLOG [Dongarra 1987]
MPP PASCAL [Potter 1985]
NEC SX/2 FORTRAN [Argonne 1988]
Saxpy Matrix-I FORTRAN [Foulser 1987]
SCS-40 FORTRAN [Argonne 1988]
Stellar GS 1000 FORTRAN [Argonne 1988]
Ultracomputer C. FORTRAN. PASCAL [Gottlieb 1983]
Unisys ISP FORTRAN [Argonne 1988]

IV-8

Table 4-3. Matching Restructuring Tools to Literature Citations

Tool Citation

ART [Applebe, et.al. 1985]
KAP (Padua, et.al. 1986]
Parafrase II (CSRD 1987]
PAT [Smith, et.al. 1988]
PFC [Allen, et.al. 1982]
PTOOL [Carle, et.al. 1987]
Sigma [Guarna, et.al. 1988]

ART-ART (Anomaly Reporting Tool) is a static source code analyzer for parallel FORTRAN
source code [Appelbe and McDowell 1985] that constructs a "concurrency history" of a program in
order to detect the following classes of potential bugs (anomalies): (1) references to variables which
have values depending on task scheduling; (2) deadlock and busy-waiting loops; (3) race conditions.
The tool is geared to vector architectures and numeric applications, although it can be generalized
to support shared memory vector architectures by parameterizing synchronization primitives.

KAP-,AP is an automatic vectorizing precompiler that transforms FORTRAN 77 code into
FORTRAN 8X. KAP is built by Kuck and Associates, Inc.; it is available for several different
computers including Cyber 205, Alliant, NEC. KAP is capable of restructuring code for vector
operations.

Parafrase II-Parafrase II, a source code parallelizing tool, was developed at the University of
Illinois Center for Supercomputing Research and Development (CSRD). The tool transforms
FORTRAN or C source code to produce new HOL code that is more easily parallelized.

PAT-PAT (Parallelizing Assist mt Tool), being developed at the Georgia Institute of Technology,
is a more advanced version of the ART source code tool [Smith and Appelbe 1988]. This interactive
tool determines and displays loop dependencies. At the user's direction, PAT can perform source
code transformations that increase parallel execution efficiency, employing a large library of such
transformations.

PFC-The PFC (Parallel FORTRAN Converter) tool, developed at Rice University [Allen and
Kennedy 1982], transforms FORTRAN source code to create vectorizable code. Sophisticated
analysis of data dependencies is performed, emphasizing potential vectorization of subscripted array
references in control loops.

PTOOL-PTOOL, an interactive source code analyzer, was developed at Rice Universi y [Ken-
nedy, et al., 1987]. PTOOL uses a database of inter-statement dependencies created by PFC analysis.
The tool analyzes loops in sequential FORTRAN programs; if dependencies prevent the paralleli-
zation of a loop, the tool displays to the user the problematic dependencies and then explains why
they prevent parallelization.

IV-9

SIGMA-SIGMA, an interactive tool, was developed at the University of Illinois CSRD forparallelizing FORTRAN, BLAZE and C programs [Guarna, Gannon, Gaur and Jablonowski 1988].
SIGMA identifies data dependencies and aids in identifying legal code transformations to exploit
parallelism and in specifying parallel subroutine execution. It is intended to accommodate large
programs and is linked to parallel application performance tools developed at the CSRD. This tool
was originally termed "BLED", for BLAZE Editor [Gannon, Atapattu, Lee and Shei 1988].

4.2.1.3 Programming Languages for NvN Architectures

With the advent of NvN machines came opinions on how best to make use of them. A majority of
users regards the development of new HOLs as essential to utilizing these machines. Table 4-4
identifies twenty-nine languages that are used for parallel programming.

Table 4-4. Matching HOLs and Literature Citations
LANGUAGE NAME LITERATURE CITATION
Actus II [Perrott, et al. 1987]
AL [Webb 1989]
APPLY [Webb 1989]
Blaze [Keolbel, et al. 1987]
Cantor [Athas, et al. 1988]
Concurrent Pascal [Hansen 1975]
CONSUL [Baldwin 1987]
CSP [Segall, et al. 1985]C* [Hillis 1985]
Data Flow Language [Gokhale 198x]DURRA [Barbacci 1987]
Edison [Segall, et al. 1985]
FORTRAN PLUS [AMT]
Glypnir [Welch 1984]
Id [Arvind, et al. 1978]
*Lisp [Hillis 1985]
MAINSAIL [Dongarra 1987]MDFL [Kung, et al. 1982]
Mesa/Cedar [Swinehart, et al. 1985]
MLP [Lang, et al. 1988]
MP [Segall, et al.1985]
Multilisp [Halstead 1986]
Multi-Pascal [Lester, et al. 1987]Occam [Wayman 1986]
Parallel Pascal [Reeves 1984]
Parallel PL/M [Stolfo 1987]
Parallel PSL Lisp [Stolfo 1987]ParMod [Eachholz 1987]
PARPC [Martin 1987]
PISCES FORTRAN [Pratt 1987]
PROTRAN [Rice 1983]VAL [Dennis 1984]
Vector C [Li, et al. 1985]
VECTRAN [Paul 1984]
W2 [Gross, et al. 1986]
XX [Snyder 1984]

IV-10

Actus II-Actus II is a Pascal-based language for processor array architectures [Perrott 1987]. The
language supports grid array data structures and is independent of the number of PEs. Actus 11
contains constructs for accessing elements of parallel arrays.

AL-AL, a programming language for systolic arrays, was developed at Carnegie-Mellon Univer-
sity [Webb 1989]. User's AL source code declarations specify how the compiler should distribute
arrays and computations across PEs; arrays can be distributed by column or by row. AL is aimed
primarily to support scientific and, particularly, signal processing applications.

APPLY-APPLY is a programming language for image processing applications [Webb 1989]; it
is primarily geared to systolic array and array processor architectures. Users specify functions that
are to be applied to a pixel and its surrounding region. The APPLY compiler distributes such regional
functions across PEs. Currently, compilers exist for the WARP, IWARP, Computing Surface, and
SLAPP architectures.

BLAZE-BLAZE, a Pascal-based language, is targeted for programming parallel applications on
both SIMD and MIMD architectures [Mehrotra 1987]. The BLAZE "FORALL' statement provides
a mechanism for achieving parallel execution.

CONSUL--CONSUL is a prototype constraint language. It is similar in appearance to Prolog or
LISP. Its main data structure is the set, and it has set manipulation operators such as AND, OR,
EXISTS, and FORALL.

C*--C* is a programming language available for the Connection Machine. It supports distributed
data structures and operations on those structures.

Concurrent Pascal-Concurrent Pascal provides language extensions to handle the notions of
"process" and "monitor" [Hansen 1975]. Emphasis is placed on synchronizing shared data access.

Concurrent Prolog--Concurrent Prolog extends Prolog by introducing or-parallelism and anno-
tated read-only variables. Synchronization is supported when unification attempts to bind a read-
only variable.

DURRA-DURRA is concerned with heterogeneous systems used in process control. It is a
description language, where description refers to process communication and organization, not
compilable, executable code. DURRA supports a message-passing model and provides constructs
for starting tasks and reading and sending messages.

FORTRAN Plus-FORTRAN Plus extends FORTRAN 77 with array operators, as well as intrinsic
functions for moving data. FORTRAN Plus introduces masks as array indices to provide a
mechanism for accessing selected portions of an array.

IV-11

Glypnir--Glypnir, an Algol-based parallel programmning language, is targeted to the lliac IV
processor array [Welch 1984]. The language reflects the Illiac IV's mesh-structured Interconnection
Network. Vector data types are explicitly declared for PEs. In addition, inter-PE operand routing is
explicitly specified in the language.

ID-ID is a functional programming language developed by Arvind and his colleagues at MIT that
is, in their words, "a declarative, implicitly parallel language that simultaneously raises the level of
programming and reveals much more parallelism than is possible with programmer annotations".

Like other functional languages, ID exposes the parallelism inherent in the functional form. There
are two aspects of ID that are particularly appealing: array initialization and loops.

Loops in ID are functional in the sense that there is not, conceptually, a set of variabies that take initial
values, then take next values, and so on. Instead, the interpretation of a loop is that there are,
effectively, n (for appropriate n) copies of the loop body, each with one of the possible values
associated with the loop variables.

*LISP--*LISP was developed for the Connection Machine. It introduces distributed data through

xectors. A xector corresponds to a set of processors with a value stored in each processor.

MDFL-MDFL (Matrix Data Flow Language) uses a data flow graph notation scheme for
programming wavefront array processors [Kung, S.Y. 1987].

MLP-MLP is a signal processing language for the Motorola T-ASP processor array [Lang, et al.
1988].

MP-MP is a meta-language defined for the Carnegie-Mellon University PIE environment [Segall
1985]. MP is intended for use with shared memory architectures. MP constructs include:

• activities--code collections (smallest schedulable unit)
• frames--declarations of shared data and operations, as well as monitoring operations on

shared data access
• teams---contain specifications for parallel programming, and include activities, frames, and

control information
* sensors-specify application monitoring code.

Multilisp-Multilisp versions based on LISP and Scheme have been produced for the BBN Butterfly
and MIT "Concert" architectures [Halstead 1986]. This language uses "futures" constructs to serve
as place holders for either values or data structures while a task calculates or constructs these
elements. Explicit task delays can be specified by the user.

Multi-Pascal-Multi-Pascal is a Pascal-based programming language geared to MIMD architec-
tures [Lester 1987]. It contains constructs for explicit parallel process creation and a parallel

IV-12

execution FORALL statement. Multi-Pascal supports a message-passing model through the use of
channel variables.

Occam---Occam is a language for fine-grained parallel programming of the Inmos Transputer; it is
based on Hoare's CSP [Hull 87,Waymar' 86]. It provides synchronized communications between
transputer processes via "channels". Control flow constructs include sequential, parallel and "first
component ready".

Parallel Pascal-Parallel Pascal is a parallel programming language for the Loral Massively
Parallel Processors and similar SIMD architectures [Reeves 1984]. The language supports parallel
array operations A parallel WHERE statement is included to support selective data operations.

Parallel PL,'M-Parallel PL/M is a system-level programming language for the DADO family of
tree-structured architectures [Stolfo 1987].

Parallel PSL LISP-Parallel PSL LISP is a LISP dialect targeted to the DADO family of parallel
architectures [Stolfo 1987].

ParMod-ParMod is a Pascal-based language geared to MIMD architectures [Eichholz 1987]. It
supports parallel execution of modules that communicate through global procedures, and parallel
task execution within modules.

ParLog86-ParLog86 extends Prolog by adding a parallel conjunction (and-parallelism) and
simultaneous clause evaluation (or-parallelism). To provide implementors with a synchronization
scheme, ParLog86 separates the two functions of unification, input and output.

PARPC-PARPC was designed for shared memory systems. The main parallel extension is
"parproc" for ir voking parallel procedures. The calling procedure is blocked while the parallel
procedures are executing. Returned values are processed immediately and the procedure is blocked
again until all procedure invocations respond. Communications are facilitated by IN and OUT
parameters. PARPC programs have a single logical thread of control, but may execute many physical
threads of control.

PFP-PFP is a FORTRAN-based language that supports parallelism at the loop, task, and subroutine
levels [Forefronts 1988].

VAL-VAL is a single-assignment language for data flow architectures designed by Ackerman;
VAL influenced Dennis' static M.I.T. Data Flow Computer (Treleaven 1982].

Vector C-Vector C is a parallel language for the Cyber 205 architecture. Its language extensions
include vector data types, expressions, and operators.

IV-13

VECTRAN-VECTRAN is geared to IBM mainframes and incorporates vector extensions to
FORTRAN [Paul 1984].

W2-W2 is a programming language for the WARP architecture and other systolic arrays [Gross
& Lamb 1986]. It combines elements of both Pascal and C. Users are allowed to specify message-
send and message-receive operations between PEs.

XX-XX is geared to the CHiP research architecture [Snyder 1984]. Users can define independent
processes, name data streams, and can use an explicit "idle" statement.

4.2.1.4 Debuggers for NvN Architectures

Throughout the process of developing NvN software many types of tools are needed to increase
productivity, such as debuggers, monitors, and analyzers. Table 4-5 identifies debuggers used in
conjunction with parallel architectures. These debuggers could possibly be integrated into a
comprehensive programming support environment.

Table 4-5. Debuggers for NvN Architectures

Debugger Literature Citation

Belvedere [Hough, et.al. 1987]
Instant Replay [LeBlanc, et.al. 1987]
Mdbx [Symult 1988]
Pdbx [Padua, et.al. 19871

Belvedere-Belvedere is a trace-based debugging tool for message-passing architectures [Hough
and Cuny 1987].

Instant Replay-Instant Replay is a debugging tool developed at the University of Rochester for
the BBN Butterfly [Leblanc and Mellor-Crummey 1987]. Instant Replay regulates and records
access to shared memory objects.

Mdbx-Mdbx is a source level debugger developed for the Symult 2010 computer [Symult 1988].
It is based on the standard UNIX dbx debugger allowing a programmer to debug a single process in
the muiti-processor environment.

Pdbx-The Pdbx tool, developed by Sequent Computer Systems, debugs multiple UNIX processes
on Sequent shared memory architectures [Padua, Guarna and Lawrie 1987].

IV-14

4.2.1.5 Performance Monitors for NvN Architectures

Table 4-6 identifies performance monitors used in conjunction with parallel architectures. These
monitors could possibly be integrated into a comprehensive programming support environment
providing a mechanism for determining an executable programs' overall performance or detecting
performance bottlenecks.

Table 4-6. Performance Monitors for NvN Architectures

Performance Literature
Monitor Citation

HyperView (Malony, et.al. 1988]
Monit [Kerola, et.al. 1987]
SeeCube [Couch 1987]

HyperView-HyperView is a performance visualization tool for distributed memory hypercube
architectures [Malony and Reed 1988]. HyperView provides graphical displays of both system
activity and performance statistics. HyperView incorporates some features of the antecedent
SeeCube tool; however, it is based on the X-Windows environment and user interface libraries that
are part of the Faust Environment at the University of Illinois CSRD.

Monit-Monit is a trace-based performance monitoring tool for parallel PPL (extended C) programs
running on Sequent computers [Kerola 1987]. Monit provides graphical displays on Sun worksta-
tions.

SeeCube-The SeeCube tool provides trace-based graphical displays of application performance on
hypercube architectures[Couch 1987, Couch 1988]. The tool executes in a Sun View windows
environment.

4.2.1.6 Programming Models for NvN Architectures

In order to attain maximum performance on many NvN machines, programs need to be rewritten and/
or new algorithms need to be developed. Several researchers believe the most efficient method for
designing application software is to use new programming models. Table 4-7 identifies program-
ming models for NvN architectures.

IV-15

Table 4-7. Programming Models for Parallel Computing

Programming Literature
Models Citation

Actors [Agha 1986]
E-L [Karr, et.al. 1989
I/0 Automata [Lynch and Tuttle 1988]
Linda [Ahuja, eLal. 1986]
Model [Prywes, et.al. 1986]
Paralation [Sabot 1988]
Unity [Chandy and Misra 1988]

Actors-Actors [Agha 1986] provides a design approach to fine-grained parallel programming. The
basic concepts of Actors were used as the basis for programming the Cosmic Cube in the Cantor
language [Athas and Seitz 1988]. The Actors approach is based on message-passing as the means
of communication between concurrent objects that consist of a code area and a small private memory.
Objects respond to messages and can create new objects. References to an object that has been
created but not yet instantiated constitute what is called "futures". Athas and Seitz used compile-time
flow analysis of futures for load balancing and for preserving locality of references. Analysis of
ratios of messages sent to messages received and of object creation patterns are retained and used as
input to heuristic procedures that map objects to processors.

E-L--The key to providing a framework for dealing with the variety of software methodologies and
hardware targets is an open architecture system which provides:

* a flexible linguistic medium, so that a user of the system can describe the domain of
discourse

• an open-ended tool set, so that a user of the system can easily use existing tools and easily
contribute new ones

* a solid base and principles of extensions, so that the user's contributions become part of
a coherent whole.

Software Options, Inc., under DARPA support, has been developing a system called E-L (Environ-
ment and Language) that can be used as a platform for supporting many software techniques for non-
von Neumann architectures and for integrating these techniques. Moreover, because of E-L's
emphasis on program transformation, it would be an ideal basis for coping with multiple hardware
targets. E-L provides the ability to state solutions in their most natural way, and also provides a way
of expressing how these initial solutions are transformed to fit well on given hardware. In particular:

• It is straightforward to extend E-L's surface grammar to provide special-purpose notation
that nevertheless looks quite built-in.

IV-16

* Because many levels of the program coexist in base E-L, it is possible to fine-tune one
aspect of a construct while letting other aspects be more general, and perhaps less
efficient.

* One may supply special purpose transformation tools that take the place of what would
ordinarily have to be done as an integral part of a compiler.

* The programmer may debug in the idiom of the extension, not of its implementation,
because all of the translations and transformations specify how executions are linked.

The E-L approach is quite different from that of designing a new language or even extending an
existing one. Rather than writing a new compiler or extending an existing one, the task is to build
a few tools that transform "bise E-L" (see below) in a certain way. The tools rely to some extent on
transformations that can be stated declaratively, and are thus relatively easy to change. Each stage
of the transformation process results in an executable base E-L program, an important factor in
debugging the tools. Finally, the last stage of translation has primitives that are so close to hardware
that extensions to an existing E-L code generator for the controlling computer are quite straightfor-
ward.

A central concern of E-L is that of extensibility. E-L provides a number of innovations in the
language and environment areas to achieve this extensibility. Chief among these innovations is that
E-L has multiple layers of language. There is a surface syntax in which programs are written and read
that provides a format similar to many conventional programming languages except that spacing and
indentation are used for grouping (like the more conventional blocks) and fonts are used for
emphasis. Programs presented in the surface syntax are reduced (i.e., transformed) into equivalent
programs in base E-L, a very simple language with a firm semantic basis. Tools such as analyzers,
compilers, and debuggers operate on base E-L, but the naive user is generally unaware of base E-L
and deals with programs in the surface syntax. The surface syntax is extensible in the sense that it
can be augmented with additional grammar rules to provide notations appropriate for particular
application domains. Programs written in extended notations are ultimately reduced to base E-L.

While a naive user is unaware of base E-L, an extender necessarily encounters base E-L in several
ways. First, when extending surface E-L, the semantics of a new construct is given by indicating how
it reduces to base E-L. Second, the analysis and transformation of programs is entirely the domain
of base E-L.

Base E-L may be thought of as defining the syntax of a single construct, a term. There are two kinds
of terms that are primitive, names and constants, and there are two kinds of terms that are made up
of other terms, abstractions and applications. An abstraction allows the introduction of nomencla-
ture; it is essentially the lambda expression of Common LISP , with some minor technical
differences. An abstraction is written as:

* ,x [term, ..., term]

IV-17

An application is written as in Common LISP , with the left parenthesis preceding the operator:

(term ...term)

Base E-L functions can take and yield varying numbers of values.

Although the syntax of base E-L is fixed, the primitives of base E-L are not. Consequently, the set
of allowable transformations is also not fixed. This provides a controlled semantic extensibility that
makes it possible for E-L to accommodate many different approaches to parallelism and concur-
rency.

Another important point is that functions, both primitives and those arising from the evaluation of
abstractions, may be passed as arguments, returned as results and, quite significantly for the study
of parallel and concurrent algorithms, stored in data structures. The reduction of flow-of-control
surface E-L constructs invariably embeds part of the construct inside an abstraction, and applies a
function to one or more function values in the base E-L version. For example, consider the iteration
construct:

For names in iteration do body

The corresponding base E-L uses the function i= to obtain generic behavior over the iteration:

(iterate iteration' Xnames' [body'])

The primed versions of the pieces are the recursively reduced versions of the non-primed surface
versions in the original. The role of iterate is to examine the value produced by iteration' and
to call the abstraction repeatedly, supplying the proper vz! ies as operands. Each call corresponds
to what the surface programmer thinks of as one iteration ol the loop. There is no special machinery
in base E-L to support iteration.

E-L has a notion of a type-template. Consider the following function header:

Function concatenate (x:list (?t), y:list(?t)) -> list(?t)

Because t is not fixed, it is not possible to say statically what type x or y has. On the other hand,
this declaration at least says that x and y will always be lists and, moreover, in any given instantiation
of concatenate they will be lists of the same type and the result will also be a list of that same
type. The type-template for concatenate would be written in surface E-L as:

template (t) (list (t) , list (t)) -> (list (t))

There is also a notion of a type-template in base E-L. Such a value can be applied to operands to obtain
a type, and it can be used in a unification-style algorithm: given a type-template and a type, it is

IV-18

possible to obtain values for the parameters of the template that will produce that type, or to affirm
that no such values exist. For example, given the type-template template (n, t) array (<n, n >, t),
andthetype array (<3, 3>, integer),thealgorithmwillproduce 3 and integer. Butifone
of the "3's" is changed to "4", the algorithm will say that the desired values do not exist.

The reduction of surface constructs involving type-templates to base E-L is too involved to discuss
here. Suffice it to say that in the base E-L for the body of concatenate, t is a parameter on an
equal footing with x and y.

Function families.are another feature of E-L. A function family is a collection of functions that are,
at surface E-L, referenced by the same name. The semantics of a function family is associated with
the family and the members of the family are committed to realizing those semantics. A good
example is the equality family, named "=". The semantics of equality is what you would expect-
mathematically, an equivalence relation. The members of the equality family would test this
property on the various data structures, such as integers, strings, arrays, and lists. The particular
member of a family that is to be used in any context is determined by the type of its arguments. This
determination is part of the job of the reduction mechanism that transforms surface E-L into base E-
L. For a more complete account of E-L, see [Karr, et al. 1989], presented as a supplement to this
report.

The breadth and depth of the facilities in E-L to support extension can be demonstrated by showing
how a UNITY program can be directly embedded in E-L. This embedding does more than simply
provide UNITY syntax and execution. It also provides UNITY program structuring facilities. The
assumption "that there are no inconsistencies in definitions of variable, always sections, or
initializations" in two programs being composed can be checked dynamically in those cases where
it cannot be verified. A more complete discussion of this embedding can be found in [Karr, et al.
1989], a supplement to this Report.

Linda-Linda [Ahuja, et.aL. 1986] is a model for parallelism that is conceptually very simple. A
number of programming languages have been augmented with constructs from the Linda model.

The basic idea underlying Linda is that there is a tuple space, TS for short, that can be accessed by
each of an arbitrary number of ongoing processes. The contents of TS is a collection of tuples of
values. There are three constructs that are added to a programming language, out, in and read.

The out construct is of the form out(v,...,v.) and says that the tuple <v,,...,v > is added to TS.

The in construct is of the form in(x,...,x,) and says that if there is a tuple of length n in TS whose
j-th component matches xi forj = 1,...,n, then that tuple is removed from TS and the process containing
the in continues execution. If there is no such tuple in TS, the process blocks until there is such a
tuple. If more than one process is competing for the same tuple, one of them will receive it and the
others will not (non-deterministically).

IV-19

The read construct, read(x,...,x), says that if there is a tuple of length n in TS whosej-th component
matches xi forj = 1,...,n, then that tuple is selected in TS and the process containing the read continues
execution. If there is no such tuple in TS, the process blocks until there is such a tuple. The tuple
selected is not removed from TS.

The basic idea of matching (simplified slightly) is as follows: If x, is a value then the tuple identified
must have that value in its j-th position. If xi has the form var y, and yj has type T, then the tuple
identified must have a value of type T in its j-th position and, on successful matching of all
components, yj is bound to the value in the j-th position of the identified tuple.

IO Automata-I/O automata [Lynch and Tuttle 1988] provide a model for discrete event systems
consisting of concurrently operating components. Such systems are characterized by the fact that
they continuously receive input from and react to their environment.

Each system component is modeled as an I/O automaton which is essentially an [possibly infinite
state] automaton with an action labeling each transition. A fundamental property of the model is that
a distinction is made between those actions that are under the control of the automaton and those
whose performance is under the control of the environment. An automaton's actions are classified
as "input", "output", or "internal". An automaton generates internal and output actions autono-
mously, and transmits output instantaneously to its environment. In contrast, the automaton's input
is generated by the environment and transmitted instantaneously to the automaton. An automaton
is unable to block inputs transmitted to it (although it may, of course, disregard certain inputs that
it receives).

Model-Model [Prywes, Shi, Szymanski and Tseng 1986] is a complete programming system
employing three primary tools: a Configurator, the Model Compiler, and the Timer. High-level
configuration specifications are input to Configurator and individual module specifications are input
to the Model Compiler. The Compiler creates a module flowchart which is input to the Timer. The
Configurator and Model Compiler arrange for appropriate data interfaces, and they attempt to
optimize concurrency of the applications or components thereof.

Paralation-The Para!ation (a contraction of PARAllel reLATION) model [Sabot 1988] is an
abstract model that consists of two data structures and four carefully chosen operators. The
Paralation model was explicitly designed to be an extension of another language. Moreover, an
instance of such an extension has been made, to Common LISP.

One of the two data structures of the Paralation model is called a field. From one point of view, a
field behaves very much like a one-dimensional array. However, from another point of view, a field
is unlike an array because its elements may be thought of as residing in different memories among
which there is a means of communication. A paralation is a collectior. of fields. Each paralation
contains a special field called its index field and there is a make-paralation operator that creates a

IV-20

new paralation with a single field, its index field, and returns that field. A good mental image for a

paralation is given by Table 4-8.

Table 4-8. An Example of a Paralation

index field, field 2 fieldk

0 d0 1 d02
1 d1, 1 d1.2 " dl.k
2 d 2 ,1 d2.2 d 2,k

n-I L-l, 1 I dn.,2 d -l,k

Each of the columns corresponds to a field. According to [Sabot 1988], a site is"the place where all
values in a paralation that have the same index are stored". In other words, a site corresponds to a
row in the above picture.

A paralation is a means for structuring fields and their elements that carefully defines field locality
or nearness between field elements. It is worthy of note that [Sabot 1988] is quite explicit that a
paralation is not a data object: there is no way to name a paralation and there are no operations defined
on paralations.

There is an elementwise evaluation operator that allows programs to be evaluated independently in
every site of a paralation to compute the elements of a new field in that paralation. This is how parallel
computation is performed in the model.

Data can be moved between paralations as well as between fields in the same paralation. This
involves the second of the paralation data structures, a mapping, which embodies a pattern of data
movement from sites to sites of the paralation(s). A mapping is produced by the match-operator,
whose arguments are source and destination fields of the paralation(s). A mapping is in turn an
argument to a powerful parallel assignment statement. The data movement can be one-to-one, one-
to-many, or many-to-one. In the latter case, a combining operator can be specified to resolve
collisions; such a move thus involveb computation as wv.1 as communication.

UNITY-UNITY [Chandy and Misra 1988] is a theory: a computational model (including notations

for writing program specifications) and a proof system.

The form that a UNITY program (specification) takes is:

Program program-name.
declare declare-section
always always-section
initially initially-section
assign assign-section

end

IV-21

The interpretations of the various sections are:

• The declare-section names the variables used in the program and their types. The syntax
is similar to that used in Pascal.

* The always-section is used to define certain variables as functions of others. It is not
necessary but is convenient.

* The initially-section is used to define initial values of certain variables. Uninitialized
variables are assumed to have arbitrary values initially. It is further assumed that the
equations establishing the initial values of the variables are not circular.

" The assign-section contains a set of assignment statements. An assignment statement
may be a simple assignment, a multiple assignment, or a set of simple and/or multiple
assignments to be done in parallel. No variable can be given two distinct values as the
result of a single assignment statement.

The execution of a program starts in a state where the values of variables are as specified in the
initially-section. In each step, any one statement is executed. Statements are selected arbitrarily for
execution, though it is required that in an infinite execution of the program each statement is executed
infinitely often. A state of the program is called a fixed point if and only if execution of any statement
in the program while in this state leaves the state unchanged. An example would be a program that
sorted a finite array of integers. When the sort is completed, the program has reached a fixed point.

An example of a UNITY program exhibiting parallelism is the following sort program:

Program sort

assign
<11 i : I -<i N A even(i)::

A[i],A[i+l] := A[i+l],A[i] if A[i] > A[i+l]>
<11 i: 1 <i N A odd(i) ::

A[i],A[i+l] := A[i+l],A[i] if A[i] > A[i+l]>
end

Here there are two quantified-assignments separated by "," the selection operator; the interpretation
is that on each cycle one of the two components is selected and the several individual assignments
that are specified in the one chosen are carried out in parallel. By choosing the odd or the even
elements one can increase the parallelism up to N because there are N/2 parallel statements, each with
two assignments, that may be executed at a given step. Obviously, dealing with any subset of the
elements of A that did not allow interference in the values being assigned to any element would also
work. It is assumed that A and N have been appropriately declared and initialized.

IV-22

, I I I I

4.2.1.7 Simulators for NvN Architectures

In the process of designing algorithms for NvN machines and designing new machines many
performance questions arise that can be quickly resolved through simulation. Table 4-9 identifies
simulators for NvN architectures.

Table 4-9. Matching Simulators to Literature Citations

Hardware Literature
Simulator Citation

B-HIVE [Agrawal, et.al. 1986]
Nestor [Nestor Inc.]
NETtalk [Sejnowski, et.al. 1987)
NeuroSoft [Hecht-Nielson Neurocoputers]
PAW [Melamad, et.al. 1985]
SIMON [Fujimoto 1983)

B-HIVE Graph Mapping Tool-This graph mapping tool was developed at North Carolina State
University as part of the B-HIVE project [Agrawal, Janakiram, and Pathak 1986]. The tool maps a
computational flow graph (representing a program) onto a computer resource graph (representing an
architectural configuration) in a manner that seeks to minimize both computational and communi-
cation time. Simulation software gathers statistics on average communication distance between
sending and receiving nodes, average channel utilization, etc.

Nestor-Nestor, Inc. offers their Nestor Development System for developing neural network
applications.

NETtalk-NETtalk is a VAX-based simulator for neural networks reported in [Sejnowski and
Rosenberg 1987].

Neurosoft-Hecht-Nielsen Neurocomputers offers their Neurosoft product for developing neural
network applications. They also offers the Anza-Plus Neurocomputing Coprocessor to speed the
learning and execution for application development.

PAW-PAW (Performance Analysis Workstation) is a modeling tool develoned at Bell Laborato-
ries [Melamed and Morris 1984). PAW employs a queueing network model c. isisting of node

-topology,-transactions within nodes, and the dynamic flow of transactions between nodes. The tool
produces performance statistics and graphical displays. It runs under UNIX on a Teletype Dot-
Mapped Display 5620 terminal as part of the AT&T UNIX-Toolchest. PAW has three major
components: a graphics editor, a text editor, and a simulator.

IV-23

SIMON-SIMON simulates the behavior of parallel C programs [Fujimoto 1983, Heller 1984], but
it lacks built-in capabilities for modeling Interconnection Network topologies [Nichols and Erdmark
1988].

4.2.1.8 Software Tool Sets for NvN Architectures

A few research institutions are working on providing a tool sets that could be considered a
programming environment for NvN machines. Table 4-10 identifies ten of these existing software
development tool sets for parallel architectures.

Table 4-10. Matching Tool Sets to Literature Citations

Tool Set Literature Citation

CODE UCG [Browne, et.al. 1989]
CODE [Browne, et.al. 1989]
Faust [Padua, et.al. 1987]
Implementation Assistant [Segall, et.al. 1985]
IR [Smith et.al. 1988]
MPF [Maloney 1987]
PARET [Nichols, et.al. 1988]
PARSE [Casvant, et.al. 1987]
PIE 2Segall 1985]
PISCES 2 [Pratt 1987]
POKER [Snyder 1984]
Rn [Carle, et.al. 1986]
SCHEDULE [dongarra, et.al. 1986]
VERDI [Shen 1988]

CODE UCG Tool-The CODE UCG (Unified Computation Graph) tool was developed at the
University of Texas, Austin [Browne, Azam and Sobek 1989]. It is an interactive tool that allows
users to specify parallel programs for MIMD architectures in terms of schedulable units of
computation and an "extended directed graph" that specifies dependency relationships. Users can
specify data, demand, mutual exclusion and control dependencies that determine whether compu-
tational units are executed. The specification of dependency relationships and computational unit
source code contents are carefully separated operations, driven by interactive menus and "form"
(template) construction. The output of this construction process is transformed into an architectur-
ally independent program specification that incorporates graph and template information. This
architecture-independent specification is then processed by a translator that is language-specific and
has knowledge of the execution environment.

IV-24

CODE-The Computationally Oriented Display Environment (CODE) developed at the University
of Texas, Austin provides a graphical programming environment. Programming is accomplished by
creating a generalized dependency graph and defining the nodes and arcs. A node is defined by
providing the so'rce code for a procedure written in a high level language (e.g., FORTRAN, C, or
Pascal). An arc definition represents either a data dependency, demand dependency, mutual
exclusion dependency, or control dependency.

Faust-Faust is a software engineering environment for scientific computing that is being developed
at the University of Illinois; it is targeted to the integration of several software development tools
through a window-based interface. Faust can automatically create a subroutine call graph from
source code. Faust also supports other details, such as process graphs and data dependency graphs.
Faust incorporates the Parafrase II restructuring tool into its environment.

Implementation Assistant-The Implementation Assistant tool is part of the Carnegie-Mellon
University PIE environment [Segall 1985]. This tool predicts parallel program performance, aids
users in selecting implementation paradigms, and generates parallel programs in a semi-automatic
manner. The implementation paradigms handled by the tool include master/slave, recursive master/
slave, heap organized problem, pipeline, and systolic multidimensional pipeline.

IR-The IR programming environment being developed at the Georgia Institute of Technology
focuses on developing, debugging, and optimizing large programs. The proposed toolkit would
provide the following functions:

1. A parallelizer that would interactively examine a user's source program and suggest
modifications to either increase parallelism or improve parallelism introduced by the user
(e.g., eliminating non-portable or inefficient use of parallel constructs) [Smith, et.al.
19881.

2. A static analyzer that would interactively simulate the execution of a user's source
program, to locate potential bugs or anomalies caused by the concurrent execution of tasks
[Applebee, et.al. 1985].

3. A dynamic debugger that would interactively execute a user's source program.

The toolkit is based upon the premises that the source language is FORTRAN, with concurrency
construct extensions, and the users will use the toolkit in an interactive edit, compile, analyze/test
cycle, until the program is ready for production use. The toolkit is intended for General Purpose,
Multiple-PE, specifically shared-memory, and is supposed to be portable to help programmers adapt
their programs to new architectures.

MMS-The Multiprocessor Monitoring Systems tool environment (MMS) contains tools for
debugging, performance analysis and visualization of multiprocessors and their program execution.

IV-25

Apart from the functionality of the tools, MMS offers portability to various parallel architectures,
expandability, and adaptability with new tools and languages, and support of several abstraction
levels. The main design concept of MMS is a hierarchical layered model for tool environments
[reference]. MMS has been under development at the Technical University of Munich since summer
1987. The first tool of the environment, the concurrent debugger, has been completed. The
performance analyzer and the visualization tools are in the specification phase. Currently, the tool
environment is adapted to target systems consisting of more than one processor element. A 32-node
iPSC from Intel is the first target system for the multiprocessor implementation of MMS.

PARET-PARET (Parallel Architecture Research and Evaluation Tool) is an interactive graphical
tool developed by Bell Laboratories [Nichols and Edmark 1988]. PARET models multicomputer
system performance using data flow graphs to represent processes, links, and buffers. PARET makes
use of behavioral simulation, which is controlled by a discrete event-driven simulator.

PARSE-PARSE is designed to be a software environment for reconfigurable non-shared memory
machines. It consists of a collection of language interfaces and debugging and analysis tools. PARSE
is designed to improve programmer productivity, where productivity is characterized by three
factors: reducing development time, improving performance and efficiency, and improving reliabil-
ity. One tool which is always used by PARSE is XPC (eXplicitly Parallel C). Every program is
eventually expressed as XPC code. XPC is designed to provide explicit parallel control, data
allocation, and program-controlled machine reconfiguration.

PCT-The PCT (Program Constructor Tool) is part of the PIE environment at Carnegie-Mellon
University [Segall 1985]. PCT provides, as the primary user-interface, an environment metalan-
guage MP. PCT's components include an MP editor, a status and reference monitor, and a relational
representation scheme. PCT transforms development and run-time statistics to a form that can be
stored as part of an intermediate program representation. The monitoring component of PCT uses
source code insertions to oversee monitoring and debugging operations.

PISCES 2-PISCES 2 is an environment for programming parallel machines. It was designed to
provide an efficient execution environment for scientific and engineering applications on a variety
of Class VI NvN architectures. PISCES 2 relies on FORTRAN 77 and UNIX as the underlying
sequential language and operating system, respectively. PISCES 2 was developed by Dr. T. Pratt at
the University of Virginia. PISCES FORTRAN is a parallel programming language for the Flex/32
[Pratt 1987]. PISCES FORTRAN language extensions include message-passing facilities, tasks,
shared common blocks, "forces" for medium grain parallelism (code segments and loop iterations),
locks and critical sections, and "windows" into array slices.

Rn-Rn is a program development environment developed at Rice University, and provides for the
development of whole programs rather than individual source modules. Rn provides a language
sensitive editor for entering source code, a module editor for composing collections of modules, a
compiler that optimizes whole programs, and an interpretive debugger. All the pieces of the Rn
environment utilize a single database that contains an intermediate representation of the program. Rn
incorporates the PFC restructuring tool in its kit.

IV-26

SCHEDULE-S CHEDULE is a package of routines that provides an interface between FORTRAN
programs and a parallel machine. The FORTRAN routines communicate through shared variables.
A programmer defines dependency relations between routines (via SCHEDULE calls), and SCHED-
ULE maps the program onto the hardware. SCHEDULE is designed to be a portable environment
for developing parallel FORTRAN programs. Existing FORTRAN subroutines can be called
through SCHEDULE without modification. Thus, users have access to a large body of existing
library software. Machine intrinsics are invoked by SCHEDULE. Users are relieved of modifying
code that is transported from one machine to another. SCHEDULE is currently running on VAX,
Alliant, and Cray-2 computers.

VERDI-VERDI (Visual Environment for Raddle Design and Investigation) is being developed by
the Microiectronics and Computer Consortium [Shen 1988]. The tool facilitates the development
of distributed systems with the Raddle design language by providing graphics facilities for design
specification, language-sensitive editing for computation and variable specification, and display
capabilities for performance monitoring.

4.2.2 Analysis of Software Tools for NvN Architecture Classes

This section correlates the NvN architecture classes defined in Chapter II and the software
development tools identified in Section 4.2.1. In addition, our analysis of software tools provides
a discussion of existing tools and recommended tools for each architecture class. Table 4-11
correlates architecture :lasses and functionality of identified tools. Clearly the largest efforts have
been directed toward the Class I and Class IV architectures, which corresponds to the number of
available machines per class.

Table 4-11. NvN Architectures and Identified Software Tools

0 d l

Operating Systems X X X

Optimizing Compilers X X X X X X

Programming Languages X X X X X X

Debuggers X X X X X

Performance Monitors X X

Programming Models X X X X X

Hardware Simulators X X X X X X

IV-27

4.2.2.1 Software Tools for NvNACS Class I: Pipelined Vector Uniprocessors

4.2.2.1.1. Analysis of Existing Software Tools and Techniques

The most commonly available software tools for these architectures consist of restructuring
compilers and libraries of mathematical subroutines. Such subroutine libraries for vector applica-
tions are often extensive. Table 4-12 shows examples of existing tools for Class I macfines.

Table 4-12. Examples of Tools for Pipelined Vector Uniprocessors

Programming Optimizing Software
Languages Compilers Tool Sets

Vector C KAP PFC
FORTRAN 8X Parafrase PTOOL

VAST Rn

Programming languages for application development on these architectures are typically standard
HOLs (e.g., FORTRAN, Pascal) with language extensions or compiler directives identifying vector
data types or operations. Restructuring software tools and compilers, such as PTOOL and PFC, are
capable of transforming standard HOLs into efficient executable code through sophisticated data
dependency analysis.

To a large extent machines in this architecture class benefit from tool development for standard von
Neumann computers. Many common tools, such as editors, operating systems, debuggers,
performance monitors, and programming models, can be effectively used to develop software for
these machines.

4.2.2.1.2. Analysis of Needed Software Tools for NvNACS Class I

Software tools available for the Pipelined Vector Uniprocessor class, primarily vectorizing compil-
ers, are probably the most highly developed tools extant for NvN architectures. However, software
tools that support the design of application programs are not nearly so prevalent. Interactive tools
(e.g., PTOOL) that identify language constructs that prevent vectorization support the development
of optimal source codes are a significant step forward toward providing support for the design
process.

Currently available tools lack design aids that would allow users to analyze performance implica-
tions of program attributes. Therefore, a useful tool for Class I architectures would determine the
impact on performance of attributes such as vector operand lengths. One possible approach is to
model the effect of alternative program structures on pipelining efficiency.

IV-28

A tool having the ability to model a variety of existing vector uniprocessors would benefit application

developers. Such a tool might use a comprehensive parameterization scheme for specific architec-

tural features (e.g., pipeline size). Forthcoming availability will depend heavily on how quickly the

computer sciences research community can define appropriate representation schemas for different

architectural features.

4.2.2.2 Software Tools for NvNACS Class II: Rhythmic Cellular Control

4.2.2.2.1. Analysis of Existing Software Tools and Techniques

Existing tools supporting the development of application programs for systolic and wavefront array
architectures consist primarily of special purpose programming languages (e.g., W2) and proposed
techniques for mapping graph theoretic algorithms that represent data flows to the features of Class
II machines. Such techniques are discussed by several authors (e.g., [S-Y. Kung 1987, Navarro, et

al., 19871). These proposed techniques have been used in research environments. Table 4-13
presents available tools for this class.

Table 4-13. Examples of Tools for Class II Machines

Optimizing Programming
Compilers Languages

Saxpy Matrix- 1 AL
FORTRAN APPLY

MDFL
W2

4.2.2.2.2. Analysis of Needed Software Tools for NvNACS Class II

The primary tool capability needed for this architectural class is a facility for mapping algorithms to
existing systolic and wavefront architectures. This will likely involve a composition facility for
creating graph representations of algorithms, as well as a means for mapping algorithms to actual
machines. Tool capabilities should include:

* comparing alternative architecture topologies
* performance modeling
* mapping algorithms to machines that have fewer PEs than algorithm calculations/

accumulations (e.g., matrix size/PE-count mismatch).

Developing fault-tolerant applications would require modeling the effects of swapping in replace-
ment PEs, particularly to determine synchronization impacts.

IV-29

Design tools are needed for rhythmic cellular control architectures. A design tool would help
decompose problems to match a machine's communications network. In addition, monitoring tools
are needed; they would require cooperating software components on both host and target architec-
tures.

4.2.2.3 Software Tools for NvNACS Class III: Processor Arrays

4.2.2.3.1. Analysis of Existing Software Tools and Techniques

Programming languages are the predominant form of existing software tools supporting the
development of applications for Processor Array architectures. Language features and extensions
for SIMD architectures of this type usually involve array-structured operands and often mirror the
particulars of the Interconnection Network connecting the processors (e.g., mesh, bit-plane organi-
zation). Table 4-14 presents available tools for Class III architectures.

Table 4-14. Examples of Tools for Processor Arrays

Programming Operating
Languages Systems

Actus II TOS
BLAZE
Glypnir

MLP
Parallel Pascal

4.2.2.3.2. Analysis of Needed Software Tools for NvNACS Class III

There are no tools that facilitate determining which of several candidate processor arrays is best
suited to a particular application. However, it is unlikely that any generic tool would ever be
constructed because of the extreme structural dissimilarity of processor arrays (e.g., Connection
Machine, MPP) and the fact that some are targeted to a particular application (e.g., the Motorola T-
ASP for signal processing).

Two categories of software development tools are needed to support processor array class machines.
First, tools are needed that facilitate comparisons among machine features to ascertain the suitability
of different PE interconnection topologies such as bit-plane organization (e.g., MPP, DAP, CLIP4)
or various mesh schemes. Second, there is a need for algorithm partitioning tools to support the
efficient mapping of algorithms to machines having fewer than the ideal number of PEs.

IV-30

4.2.2.4 Software Tools for NvNACS Class IV: Associative Memory Processors

4.2.2.4.1. Analysis of Existing Software Tools and Techniques

Over the past decade, much of the interest in content-addressable memory has been shifted to neural
network research. Therefore, current developmental work on support software for associative
memory processors is essentially restricted to just a few manufacturers (e.g., Loral Systems for the
STARAN and ASPRO machines). Existing support software includes operating systems, compilers,
and expert system development tools. Table 4-15 presents tools available for Class IV architectures.

4-15. Examples of Tools for Associative Memory Processors

Operating Compiler
System

Unix-ASPRO FORTRAN
C

4.2.2.4.2. Analysis of Needed Software Tools for NvNACS Class IV

Since the natural strength of these architectures is parallel database matching operations (e.g.,
correlating sensor-events with platforms), two practical questions arise in determining associative
memory architecture applicability:

* are they superior to other architectures in such matching functions?

* can they perform other than matching functions rapidly enough to be useful as general

purpose machines?

Software performance modeling tools could provide appropriate answers to both questions.

In addition, software design aids, such as algorithm partitioning tools, would be of considerable help
in developing applications for associative memory machines, because of the lack of widespread
programmer experience in designing efficient algorithms for these architectures. The support
software provided by the Loral Systems Group for developing expert systems on the ASPRO
effectively addresses this problem [Lott 19871.

4.2.2.5 Software Tools for NvNACS Class V: Operand-Driven

4.2.2.5.1. Analysis of Existing Software Tools and Techniques

Data Flow and Reduction Machine architecture research is intertwined with research into data flow

languages and programming models. Most operand-driven machines are university computer

IV-31

research center prototypes; several data flow programming languages for these machines have been
proposed and prototype compilers are being developed. However, there seems to be no mature
software development support tools currently available for these architectures. Table 4-16 presents
tools available for Class V architectures.

Table 4-16. Examples of Tools for Operand Driven

Programming
Languages

ID
VAL

4.2.2.5.2. Analysis of Needed Software Tools for NvNACS Class V

Research in operand-driven architectures is relatively immature; consequently, there are very few
software development tools that could be compared against generic requirements for the class. Two
kinds of generic tools are crucial for further advances in this area. First, tools are needed for top-down
design of data flow algorithms and for transforming standard HOL source code constructs into data
flow constructs, because there is no widespread familiarity with the data flow programming
paradigm. Second, trace-based performance modeling tools could help in identifying applications
that can effectively exploit data flow and reduction machine architectures.

4.2.2.6 Software Tools for NvNACS Class VI: General-Purpose, Multiple-PE

4.2.2.6.1. Analysis of Existing Software Tools and Techniques

Recent research activities have yielded a significant number of software support tools for GPMPE
architectures, including development support tools, languages, environments, and operating sys-
tems. Table 4-17 presents tools available for Class VI architectures. Although some existing tools
are geared to both private and shared memory architectures (e.g., the University of Texas-Austin
CODE environment and tools [Browne, et al.. 1989]), most of the tools are geared to only one such
category. Because of these different orientazions, the existing software tools for each type of memory
architecture will be discussed separately in the following paragraphs.

Table 4-17. Examples of Tools for GPMPE

Operating Optimizing Programming Performance Programming Hardware
Systems Compilers Languages Debuggers Monitors Models Simulators

Chrysalis ART BLAZE Belvedere HyperView I/O Automata CODE UCG
COS Parafrase II Cantor Instant Replay Monit LINDA CODE

MACH PAT Multi-Pascal PCT SeeCube MODEL PARET
MMOS Sigma Occam Pdbx PAW

PASMOS XX
UNIX

IV-32

Sophisticated application design and partitioning tools have been developed for private memon.
GPMPE architectures; some provide advanced performance modeling capabilities (e.g., PA RET and
B-HIVE). Mature debugging and performance monitoring tools have also been constructed.

Application design support tools for shared memory GPMPE architectures are not as plentiful as for
private memory machines. Segall's Implementation Assistant (IA) tool [Segall 1985], which
automates the comparison of candidate algorithm control paradigms, is perhaps the most ambitious
design tool effort. In addition, several debugging and performance monitoring tools have been
implemented; most are based on UNIX or UNIX-like operating systems. Although advanced tools
for source code analysis and transformation exist, many of these tools emphasize vectorization for
multiple-cpu vector architectures, such as the Cray X/MP (e.g., ART, PAT), and have capabilities
similar to the tools developed for pipelined vector uniprocessor architectures (e.g., PFC, PTOOL).
Parafrase II, another code analysis tool, seems to be geared to both vector and non-vector oriented
shared-memory GPMPE architectures.

4.2.2.6.2. Analysis of Needed Software Tools for NvNACS Class VI

Although tools Prnd environments have been constructed that provide sophisticated NvN software
development capabilities, this survey has not identified any integrated set of capabilities that unites
algorithm specification and performance modeling feedback with interactive assistance on effective
design principles. There appear to be no design tools available that aid in predicting the comparative
performance of a given algorithm on a variety of GPMPE architectures; this is in stark contrast to such
code analysis tools for both single and multiple CPU vector architectures (e.g. PTOOL and PAT).

Alternative modeling capabilities for alternative private memory architecture topologies (e.g., B-
HIVE graph tool and PARET) do not appear to be matched with similar modeling capabilities for
shared memo. architectures.

A well-integrated set of capabilities are needed, including (1) facilities for specifying algorithms, (2)
modeling an algorithm's implementation on alternative GPMPE architectures, and (3) obtaining
interactive "advice" on effective design principles for specific NvN architectures.

Designers faced with selecting the best parallel architecture for a specific application need modeling
tools for predicting application performance on both private and shared memory architectures. The
University of Texas-Austin CODE UCG Tool, which allows application specification for both
private and shared memory architectures, might prove useful. Performance modeling tools are
needed for alternative shared memory architectures to help determine the performance effects of
alternative mechanisms for memory access locking, of different memory access patterns, of various
cache coherency strategies, and of alternative Interconnection Network technologies.

There remains a need for additional source code analysis tools that partition algorithms on private
memory GPMPE architectures. Existing tools, such as Parafrase II, SIGMA (for Single Address

IV-33

Space Architectures), and the Cantor compiler (which uses compile-time heuristics for hypercube
architecture load balancing) could prove useful.

Performance modeling tools are needed for alternative shared memory architectures to help
determine the performance effects of alternative mechanisms for memory access locking, of
different memory access patterns, of various cache coherency strategies, and of alternative intercon-
nection network topologies.

4.2.2.7 Software Tools for NvNACS Class VII: Neural Networks

4.2.2.7.1. Analysis of Existing Software Tools and Techniques

A significant amount of software exists to model the performance of proposed neural network
applications predicated on paradigms such as Adaptive Resonance Theory, Back-propagation,
Counter- propagation, and Competitive Learning.

In addition, software tools such as Hecht-Nielsen Neurocomputers Neurosoft product and Nestor
Inc.'s Nestor Development S ystem, are available for the creation of neural network software models.
Table 4-18 presents tools available for Class VII architectures.

Table 4-18. Examples of Tools for Neural Networks

Hardware
Simulators

Anza-Plus
Neurosoft

Nestor

4.2.2.7.2. Analysis of Needed Software Tools for NvNACS Class VII

Current software tools for modeling the performance of neural network solutions for various
applications typically emphasize performance results in terms of the percentage of correct classifi-
cations, although the speed for obtaining results is often reported as well. The technical literature
does not clearly indicate the existence of modeling software tLat can report on both aspects of
performance for neural networks that are organized either for alternative learning or for recognition
paradigms.

Software tools for evaluating the comparative suitability of various neural network learning
paradigms (e.g., Back-propagation, Kohonen learning) would likely prove useful. However, most
proposed neural network hardware architectures are radically dissimilar from other NvN architec-
tures, due to the notion of embodying algorithms in inter-PE connections as well as in computations.
It is difficult, therefore, to propose software tools that would compare the suitability of neural
networks with respect to other Non-von Neumann architectures.

IV-34

4.2.2.7.3. Examples of Software for Neural Network Architectures

a. Neural Network Application Simulation

(1) NETtalk is a VAX-based simulator reported in [Sejnowski and Rosenberg 1987).

(2) The Globular Protein Secondary Structure Predictor is a Ridge 32-based simulator
reported in [Qian and Sejnowski 1988].

(3) The Sonar Target Classifier is a Ridge 32-based simulator reported in [Gorman and
Sejnowski 1988].

b. Application-Independent Neural Network Modeling Software

(1) Hecht-Nielsen Neurocomputers offers their Neurosoft product.
(2) Nestor, Inc. offers their Nestor Development System.

c. Neural Network Emulation Coprocessors

(1) Hecht-Nielsen offers their Anza-Plus Neurocomputing Coprocessor.

(2) The Helsinki University of Technology offers the Neurocomputers Neural Phonetic
Typewriter, which was developed by Professor Kohonen.

4.2.3 Analysis of Existing Software Tools for Supporting a Life-cycle on NvN Architecture

Software tools exist which support each phase of a life-cycle as shown in Table 4-19. However, their
effectiveness is questionable and will be discussed in the following paragraphs.

Requirements Analysis--Tools that exist in this phase of a life-cycle do not provide enough
assistance to problem analysis for architecture selection. Performance constraints, problem
definition and architecture characteristics direct the suitability of specific architecture types. This
information, if available, is critical to design decisions. In the survey no tools were found to
significantly aid in this part of the analysis.

Design--For the design phase tools were provided but have major deficiencies. Tools that address
portability issues produce designs that are not optimal. The architecture specific tools produce more
optimal designs but are dependent on subsequent phases in the life-cycle such as implementation and
test which feed back information on performance. This shows a weakness in the current state of
design tools and a bias towards life-cycle methodologies which iterate between the design,
implementation and test phases.

IV-35

Table 4-19. Tools Available for Each Phase of the Life Cycle

Operating Systems X X

Optimizing Compilers X

Programming Languages X

Debuggers X

Performance Monitors X X

Programming Models X X X

Hardware Simulators X X X

Tool Sets X X X X X

Coding and unit testing-Most of the tools provided in this phase are architecture specific;
automated code decomposition is still a research area; test and debugging techniques for NvN are
similar to those used for TvN architectures and are ineffective for multi-processor/multi-memory
systems.

Integration and test-The major deficiency in this phase is in the area of performance monitoring.
For NvN machines, there are no standard performance metrics. Tools concentrate on machine
efficiency rather that problem solution bottlenecks.

Maintenance-Rehosting tools have both performance and correctness problems.

4.3 THE AUTOMATION OF SOFTWARE DEVELOPMENT FOR NvN ARCIUTECTURES

The analysis presented in this chapter of the report clearly indicates that the state-of-the art in
software engineering for NvN architectures requires further research and investigation. This section
discusses software development for NvN architectures in the future.

As the data clearly indicates NvN architectures are rapidly becoming computation engines for
scientific and engineering research and development. Commercially available tools for these
machines consist mainly of operating systems, language compilers and debuggers. Research
communities are investigating tools that cross machine architectures, such as graphics based

IV-36

programming tools, programming models, and new languages. While most of the research in these
areas is interesting, few commercial quality products have emerged. Further research is needed in
these areas and as that research proves fruitful, organizations need to build quality tools around those
products.

Researchers have analyzed many of the issues related to coding and unit testing and efficiency of
execution. Issues, such as load balancing, PE-to-PE communications, PE-to-Memory bandwidth,
and replication of computation and data. These issues are being analyzed through research in the
areas of operating systems and compiler optimizations. Many of the issues related to design and
maintenance, such as reliability, portability, and readability, are being looked at by programming
language designers and researchers creating programming models. While many of the specific issues
are being addressed it would be useful to have tools that assist programmers resolve problems in these
areas independent of other, larger functions.

Few research efforts are investigating phases of the life cycle other than the code and unit test phase.
The survey identified no tools, which specifically address requirements analysis, design, integration
and test, deployment, and maintenance. The initial phases of requirements analysis and and design
are probably the most important areas where further research is needed. Early identification of NvN
architectures can only assist in the development of efficient algorithms and software implementa-
tions for a project.

As the field of NvN computing matures, techniques and methodologies for software engineering will
evolve. As these methodologies evolve inter-phase tools will emerge that assist in moving from
requirements analysis to maintenance. As stated earlier documentation and traceability are not part
of the life cycle phases, however, the need for communication and correctness for large projects most
surely requires such tools. Automation between phases will potentially reduce the errors from inter-
phase transitions.

Once methodologies are developed, software development environments can be created that
automate the entire life cycle based on a methodology. Tools can be integrated that provide a
consistent view of a project from requirements analysis through deployment and maintenance.

IV-37

CHAPTER V. CONCLUSIONS

5.1 CONCLUSIONS ABOUT THE CURRENT STATE-OF-THE-ART

There are several instances of NvN machines for each of the seven classes defined in the NvN
Architecture Classification Scheme (NvNACS). The majority of extant machines having NvN
architectures are in Class I (Pipelined Vector Uniprocessor) and in Class VI (General Purpose,
Multiple-Processing Element).

Many existing problems will be re-hosted on NvN machines, and there are an even larger number
of remaining problems for which solutions will be sought using NvN machines. Because examples
of each class are available in the marketplace, future utilization patterns will be defined by users'
applications.

Many research efforts are focusing on the creation and implementation of efficient algorithms for
NvN architectures. Many software tools are emerging from research institutions that address issues
pertinent to efficient run-time implementations of algorithms, such as distributed operating
systems, restructuring compilers, debuggers and performance monitoring tools.

There are a few efforts focusing on the software engineering issue of portability. Programming
models such as LINDA, Actors and Model are examples of early efforts to resolve portability
issues, as well as other critical issues, such as efficiency, reliability and maintainability.

5.2 RECOMMENDATIONS FOR ADVANCING THE STATE-OF-THE-ART

The rapid evolution of NvN architectures will continue to outpace the ability of programmers to
utilize them efficiently for solving problems. The focus of research should be shifted toward
software tools that support each phase of the life cycle.

Algorithm selection, architecture selection, load balancing, PE-to-PE and PE-to-Memory
communications, and performance evaluation are critical issues, which need to be considered in
each phase of the life cycle and require tools to deal with them. In addition, the software
engineering issues of reliability, maintainability, portability, efficiency and productivity need to be
addressed.

Many existing tools should be integrated into an initial environment focusing on the implementation
of software. As new tools addressing other life cycle phases become available, they can be
incorporated to create a robust programming environment.

New software engineering methodologies will emerge as many of the critical issues pertinent to
NvN computing become better understood. Most likely these new methodologies will follow other
current trends in software engineering and incorporate some type of iterative process, which
combines the phases of the life cycle. These methodologies will evolve as NvN computing
environments mature. Research needs to be conducted in the areas of requirements analysis and
design to speed the evolutionary process.

V-1

APPENDIX A: ARCHITECTURE ASSESSMENT SKETCHES

This appendix to the Final Report contains concise, informal sketches of architecture assessments,
including remarks on strengths, weaknesses, and likely application domains for selected categories
in the Non-Von Neumann Architecture Classification System (NvNACS). Assessments are offered
for at least each high-level class of architecture. In addition, assessments are provided for lower-level
classification categories of the General Purpose Multiple PE Class.

This appendix does not constitute an exhaustive analysis of the strengths and weaknesses of major

computer architecture categories.

A. 1 Pipelined Vector Uniprocessor Architectures

A.1.1 Strengths

These architectures perform very efficiently for applications in which data is naturally represented
as vectors and matrices.

Performance is best for applications that:

" have enough sequential numeric calculations to keep the pipeline(s) filled;

" use vectors with lengths that are equal to the number of vector registers, are a multiple

of the vector register count, or are a factor of the register count (e.g., vector lengths of 4
or 8 for 16 registers).

Very sophisticated compilers that automatically vectorize application code exist for most of these

architectures.

A. 1.2 Weaknesses

Parallel execution of programming constructs that do not involve vectors is limited to pipelining and,
possibly, use of multiple functional units.

Potential parallelism at the task or subroutine level is not exploited.

The performance of these architectures on symbolic processing or data base-oriented applications
can be expected to vary considerably.

Software developers may be required to have detailed knowledge of how associated compilers
vectorize code in order to construct applications that effectively exploit these architectures'
strengths.

A-1

A. 1.3 Application Analysis

The vector computation capabilities of these architectures are most often exploited for scientific and
engineering applications, particularly modeling. Example applications surveyed include fluid
dynamics, seismic modeling, and Navier-Stokes equations.

A.2 Rhythmic Cellular Control Architectures

A.2.1 Strengtis

Individual PEs can be simple and inexpensive because each performs a very limited function. Fixed
systolic and wavefront architectures are very efficient because of the high degree of parallelism
achieved.

A.2.2 Weaknesses

The application-specific character of fixed systolic and wavefront architectures requires a new
hardware configuration for each application, resulting in possibly non-trivial development costs,
despite use of common modular components.

Developing high-level language applications for programmable systolic architectures may be
difficult, since explicitly programming the necessary rime delays is not supported by many standard
high-level programming languages.

The systolic architecture practice of synchronizing all PEs with a global clock effectively limits the
number of PEs (because of skewing that results from clock signals having to travel too great a distance
to the farthest PEs [Kung 1984]).

A.2.3 Application Analysis

The most prevalent use of systolic and wavefront architectures is to perform matrix operations for
signal processing applications. Academic researchers, however, have experimented with systolic
architectures for text manipulation, data base searching, and automata implementation [Kung 1982].
Surveyed applications included radar, sonar, nucleic acid sequence comparison, and linear algebra.

A.3 Processor Array Architectures

A.3.1 Strengths

Potentially, a very large number of processors can be brought to bear on a problem, providing a high
degree of parallel execution.

A-2

. - .m~m m m nm m iN EW

Processor array architectures are esp.;cially effective for applications that involve identical compu-
tations being performed on different data.

The synchronization scheme used is straightforward (broadcasting a single instruction that all PEs
execute in lockstep), thereby eliminating the need for explicitly stating complex synchronization
-nechanisms in application software.

A.3.2 Weaknesses

Limiting parallelism to the instruction level, as these architectures do, precludes effective parallel
execution at the task or procedure level. This has historically restricted the applicability of these
architectures in some significant p-- olem domains. However, architectures such as the Connection
Machine, with 1-bit PEs that can essentially modify the broadcast instruction, appear to be applicable
to domains previously ill-suited to array processor organization.

A.3.3 Application Analysis

Processor array architectures are commonly used for scientific and engineering applications similar
to those often found on vector processor architectures. In addition, bit-plane oriented processor array
architectures are particularly suitable for image processing applications. Sur,,eyed applications
included:

satellite imagery and data processing
numerical analysis
Monte Carlo simulation
partial differential equations solution
weather forecasting
nuclear energy modeling
seismic data processing
structural analysis
passive and active sonar signal processing
economic simulation.

A.4 Associative Processor Architectures

A.4.1 Strengths

The primary strength of architectures built around an associative memory is tiw- speed with which
highly parallel data search and comparison operations can be performed.

These architectures should be particularly effective for embedded military applications that require
rapid matching of data base contents against records constructed from sensor-based data (e.g., match
a record describing a radar emitter in the environment against stored records containing known
emitters' pulse width, pulse repetition interval, etc.).

A-3

A.4.2 Weaknesses

These architectures' potential weakness for some applications is of the time required to load or reload
the associative memory.

This could be particularly acute if the memory were too small to hold the relevant data base.

Associative memory processing architectures may not be flexible enough to efficiently implement
a broad variety of applications and algorithms.

A.4.3 Application Analysis

Surveyed applications for associative processor architectures inci-de tracking and surveillance,
image and signal processing, and cartography.

A.5 Operand-Driven Architectures

A.5.1 Strengths

These architectures potentially provide a high degree of parallel execution at the instruction level.

Since these architectures appear to be especially promising for application domains and program-
ming languages dominated by expression evaluation, they are likely to prove effective for rule-driven
expert systems and for artificial intelligence applications (e.g., breadth-first searches of solution
spaces).

A.5.2 Weaknesses

Few of the existing architectures of this class appear to handle PE failures effectively [Srini 1986].

A possible practical weakness results from the reliance of operand-driven architectures on applica-
tions being represented in largely experimental data-flow or functional programming languages.
Since it is unlikely that there is widespread programming expertise in this area or mature software
tools to develop applications in these forms, utilizing these architectures for large DoD programs
seems unlikely in the near future.

A.5.3 Application Analysis

Most of the surveyed applications are intended to prove either the viability of functional and data-
flow programming languages or of this kind of architecture [Trealeven 1982]. Therefore, it seems
premature to characterize these architectures in terms of relevant application domains.

A-4

A.6 General-Purpose Multiple-PE (GPMPE) Architectures

The architectural characteristics of machines in this class are so diverse that any assessment of
strengths, weaknesses, and surveyed applications for the class as a whole would not be useful.
Instead, such assessments are given for appropriate subcategories of this high-level class.

A.6.1 Hypercube Topology, PE-to-PE Communication Architectures

A.6.1.1 Strengths

A significant advantage of hypercube topology interconnections is that the network's communica-
tions diameter is log2(n). However, a traditional hypercube (in which the number of nodes is a power
of 2) must have log2(n) interconnections at each node, where n = the total number of nodes.
Alternatives to traditional hypercube topologies that rednce the interconnections per node include
spanning bus hypercubes and dual-bus hypercubes.

The redundant pathways of traditional hypercube topologies that use a bit-correction scheme of
message-passing afford a degree of fault-tolerance. When a node in a hypercube with N nodes and
log2(n) dimensions (where log2(n) > 2) possesses a message that it should forward to a node other
than its immediate neighbors, and a single neighbor node has failed, at least one viable pathway
remains.

An advantage of message-passing architectures based on a hypercube topology is the relative
simplicity of the hardware and operating system that result from not providing facilities to support
synchronization mechanisms based on shared memory (e.g., fetch-and-add or test-and-set primi-
tives).

A.6.1.2 Weaknesses

A potential weakness of these architectures is the performance degradation that can result from the
interconnection system's being unable to quickly process the message traffic. For example, some
implementations of this kind of architecture could suffer from losing communication packets if
packet forwarding queues overflowed.

A.6.1.3 Application Analysis

Most of the surveyed applications for message passing architectures were scientific, including
astrophysics, quantum chemistry, and fluid and structural mechanics.

A-5

A.6.2 Ring Topology, PE-to-PE Communication Architectures

A.6.2.1 Strengths

Strengths of this straightforward interconnection scheme include simplicity and high-speed data
passing for applications in which a PE primarily needs to pass data to only an immediately accessible
nearest neighbor.

In the surveyed examples of this architectural scheme, individual PEs consist of multiple functional
units (connected by a crossbar) and are each high-performance processors. Ring topologies can
readily accommodate additional PEs (within limits imposed by the size of the destination field
associated with each passed packet).

A.6.2.2 Weaknesses

A single-ring topology may be inefficient for applications that do not exhibit nearest-neighbor
communications as the most common data transfer operation, since the communications diameter
is n/2 (for n nodes). In addition, single-ring architectures may be rendered useless by a single node's
failure. A topology providing connectivity along chords of the ring can mitigate both these problems.
Commercial ring processors manufactured by Control Data Corporation use dual rings to provide
improved fault tolerance.

A.6.2.3 Application Analysis

Surveyed applications include scientific and engineering applications, and digital signal processing.

A.6.3 Tree Topology, PE-to-PE Communication Architectures

A.6.3.1 Strengths

These architectures are particularly efficient for parallel implementation of applications that can be
decomposed into multiple search and evaluate tasks. For example, artificial intelligence applica-
tions that involve depth or breadth-first searches on a problem space represented as a tree data
structure are well suited to this kind of architecture.

These architectures can be effectively used as Multiple SIMD machines, with some processor nodes

broadcasting instructions to the successor nodes beneath them [Stolfo 1987], [Hillyer et al, 1986].

A.6.3.2 Weaknesses

Communication diameter is a potential problem for tree topology architectures. For example, a
complete binary tree with n levels (and 2n- 1 processors) has a communication diameter of 2(n- 1).
The X-tree solution to this problem links all nodes at each level of the tree. The experimental DADO2

A-6

architecture developed at Columbia University addresses this problem by using a custom I/O switch
and combinational circuit to ensure that broadcasting a word of data to all PEs takes a constant
number of instruction cycles, and takes O(log n) gate delays rather than O(log n) instruction cycles.
Though effectively providing additional communications links to the tree topology, both solutions
increase fault tolerance by allowing communications to reach a node's descendents when that node
has failed.

A.6.3.3 Application Analysis

Surveyed applications for these architectures include:

Artificial Intelligence production systems
data base applications, scientific programming
image and signal processing
sonar applications
speech recognition.

A.6.4 Reconfigurable Topology, PE-to-PE Communication Architectures

A.6.4.1 Strengths

The most evident strength of these architectures is their flexibility, which allows users to effectively
configure the machine's topology in an appropriate fashion for particular applications.

Reconfigurable architectures have considerable inherent promise for highly fault-tolerant systems.

A.6.4.2 Weaknesses

Reconfigurable topology systems are likely to increase the complexity of application software
development efforts, since the specification and initialization of the desired topology may be non-
trivial efforts.

A.6.4.3 Application Analysis

Surveyed applications for these architectures included simulation, FFT-based calculations, artificial
intelligence applications, and image processing.

A.6.5 Bus Interconnection, PE-t--Memory Communication Architectures

A.6.5.1 Strengths

Bus-based multiprocessors reply on a mature, relatively uncomplicated interconnection technology
that, within limits imposed by destination fields, can easily accommodate additional processors.

A-7

A.6.5.2 Weaknesses

Contention for access to the bus may be a significant weakness for applications involving a high
degree of processor to processor communications.

Fault-tolerance is obviously lacking in single bus systems, although recent work with multiple bus
systems suggests possible techniques for more robust bus-based architectures [Bhuyan 1987].

A.6.5.3 Application Analysis

Surveyed applications for bus based systems include simulation, seismic data processing, aerospace
applications, and image and signal processing.

A.6.6 Crossbar Interconnection, PE-to-Memory Communication Architectures

A.6.6. 1 Strengths

An essential strength of crossbar based architectures lies in the comprehensive nature of the
interconnections, since every involved component is connected to all its counterparts (e.g., each PE
is directly connected to every memory). There is no contention for inter-connection resources with
crossbar technology.

A.6.6.2 Weaknesses

The basic weakness of crossbar-based interconnection technology is there is a definite practical limit
to the number of connectable components.

A.6.6.3 Application Analysis

Unlike some of the architectures surveyed in this appendix (e.g., systolic, associative memory
processors), there is no obvious application type that is naturally geared to crossbar-based GPMPE
architectures. Surveyed applications include general scientific and engineering computation and
data processing as well as signal processing.

A.6.7 Direct Memory Access (DMA) Interconnection, PE-to-Memory Communication Architec-

tures

A.6.7.1 Strengths

The surveyed architectures are pipelined multiple CPU vector machines. Their greatest strength is
very high speed numerical computation.

A-8

Multiple PE architectures of this type provide parallelism in several ways, including pipelining,
multiple functional units. vector instructions, and parallel execution of multiple tasks.

The DMA interconnection scheme allows each CPU to rapidly obtain a comparatively large amount
of data from the shared central memory in a single operation.

A.6.7.2 Weaknesses

Although these architectures offer both fine-grained parallelism (at the instruction level) and coarse-
grained parallelism (at the task level), their relatively small number of CPUs (e.g., 4-10) may make
their capabilities difficult to exploit for applications best implemented with a very large number of
independent processing elements.

A.6.7.3 Application Analysis

The applications best matched to these architectures are those that involve a large number of
arithmetic computations (sufficient to keep the pipelines filled), that consist of matrix and vector
operations, and that can efficiently exploit coarse-grained parallelism at the task level.

Surveyed applications include a wide variety of scientific and engineering applications, simulation

and modeling, and numerical analysis.

A.6.8 Multistage Interconnection Network (MIN), PE-to-Memorv Communication Architectures

A.6.8.1 Strengths

A major strength of these architectures is the ease with which they can be expanded. In order to
connect n processors to n memories, such an architecture typically uses a MIN of log2(n) stages of
2x2 switches and n/2 switches per stage. Such an interconnection scheme can efficiently handle a
large number of processors [Miller 1987], [Bhuyan 1987]).

The fast shared memory facilities offered by this kind of architecture are promising for effective
parallel processing, since they can be exploited for flexible synchronization schemes and might allow
more data to be rapidly shared between processes than would a message passing system.

A.6.8.2 Weaknesses

Applications involving repetitive, predictable numerical calculations seem more likely suited to the
features of vector architectures, systolic arrays, or processor array architectures than the more general
Log2(n)-stage MIN shared memory architectures.

A-9

A.6.8.3 Application Analysis

The surveyed literature for these ai chitectures indicates that many of these architectures are primarily
intended for general purpose use rather than for specific application domains ([Mak 1986]).

A.7 Neural Network Architectures

A.7.1 Strengths

Reported research suggests that neural network architectures are well-suited to performing a variety
of recognition tasks (e.g., hand-written character analysis). Recent demonstrations support the
premise that neural networks can be effective for real-time tracking tasks.

In addition, neural networks can be efficiently exploited as content-addressable memories (i.e., as
associative memory processors).

A.7.2 Weaknesses

The process of training neural networks for various tasks is an immature discipline that has not yet
been systematized.

A.7.3 Application Analysis

Much of the more successful research with neural networks involves using them for recognizing
human speech, handwritten characters, and images. Surveyed applications include:

speech recognition that drives a typewriter for the Finnish and Japanese languages
associative memory processing
alphanumeric character recognition.

A-10

APPENDIX B: SURVEYED PERFORMANCE DATA

B. 1 Reported Performance Data

Table B-I shows reported performance data for various NvN architectures, as well as the sources for
this information. All performance data is in Mflops, unless otherwise stated. Source citations refer
to entries in the Bibliography at the end of Section VI.

Table B-1. Reported Performance Data

Architecture Peformance (Mflops) Data Source

ASPRO 40Mops [Loral phonecon 1988]
BSP 50 [Miller 1987]
CDC Star- 100 40 [Hwang 19841
Connection Machine 100OMips (expected) (Dongarra 19871
Cray- 1 160 [Dongarra 19871
Cyber 205 800 .(32-bit arith) [Dongarra 1987]
Encore Multimax 15Mips (quoted) [Dongarra 1987]
FACOM VP-200 1142 [Dongarra 19871
Galaxy (400 model) [Hwang 1984]
Hitachi S-810 120 [Dongarra 1987]
Hitachi S-8 10 alternate data 500 840 [Hwang 1984]
iPSC (64-node iPSC-VX/d6) 1280 (short precision) [Dongarra 1987]
Matrix- 1 1000 [Foulser 1987j
MPP 400 [Dongarra 1987]
NEC SX-2 1300 [Hwang 1984]
STARAN 80Mops (Loral phonecon 1988]
ESL Systolic Adaptive Beamformer 350 [Kandle 1987]
Hughes Systolic/Cellular System 450 [Nashl987]
TI-ASC 40 [Hwang 1984]
T-ASP 320 [Langl988]

B.2 Inferred Performance Data

Table B-2 shows inferred performance data for various NvN architectures that is based on simply
multiplying a performance rate for a component processor by the maximum number of processors
in the machine. such measurements do not reflect multi-processor synchronization overhead and,
therefore, may not represent realistic performance measurement.

B-1

All performance data is in Mflops, unless otherwise stated. Source citations refer to entries in

the bibliography.

Table B-2. Inferred Performance Data

Architecture Peformance (Mflops) Data Source

Alliant FX/8 94.4 (11.8/PE x 8) [Dongarra 1987]
Cray X-MP/4 940 (235/PE x 4) [Dongarra 1987]
Cyberplus 256000 (100/PE x 256) [Dongarra 1987]
ETA-10 10000 (1250/PE x 8) [Dongarra 1987]
HEP 160 (10/PE x 16) [Dongarra 1987]
WARP 100 (l OPE x 10) [Miller 1987]

B-2

APPENDIX C: ARCHITECTURE TO TECHNICAL LITERATURE MAP

This section correlates constructed or proposed architectures to the seminal articles describing those
architectures. In a few cases, commercial data-sheets are given as the fundamental citation, since no
major technical journal or conference article could be identified that describes the architecture.
Whenever possible, citations to an article devoted to the particular architecture are used, rather than
references to surveys or anthologies.

C. 1 Class 1: Pipelined Vector Uniprocessor Architectures

CDC Star-100 [Hwang 1984 (pp. 5-8)]
Cray-I [Kozdrowicki 1980)
Cyber 205 [Lincoln 1984], [Kozdrowicki 1980]
Fujitsu VP-200 [Miura & Uchida 1984]
Galaxy (P.R.O.C) [Hwang 1984 (pp. 5-8)], [Dongarra & Duff 87]
Hitachi S-810 [Hwang 1984 (pp. 5-8)]
NEC SX-2 [Hwang 1984 (pp. 5-8)]
Texas Instruments ASC [Hwang 1984 (pp. 5-8)]

C.2 Class 2: Rythmic Cellular Control Architectures

Advanced DSP Systolic Array Architecture, Motorola [Leeland 1987]
GaAs Systolic Array Beamforming Controller, RCA [Hein 1987]
Memory-Linked Wavefront Array Processor, Johns Hopkins [SY Kung, 1987]
Princeton Nucleic Acid Comparator, Princeton/Brown [Lopresti 1987]
Saxpy Matrix-I [Foulser 19871
SLAPP (Systolic Linear Algebra Parallel Processor), NOSC [Drake & Luk 1987]
STC-RSRE Wavefront Array Processor System, Std. Telecommunications [McCanny 19871
Company/Royal Signals and Radar Establishment (UK)
Systolic Adaptive Beamformer, ESL [Kandle 19871
Systolic/Cellular System, Hughes Rsch. Laboratory [Nash 1987]
WARP [Annaratone 1986]

C-1

C.3 Class 3: Processor Array Architectures

Burroughs Scientific Processor [Kuck & Stokes 1984]
Connection Machine, Thinking Machines Corp [Hillis 1985]
DAP (Distributed Array Processor) [Reddaway 1973], [Paddon 1984]
Illiac IV (Burroughs) [Barnes, et. al. 1968], [Kuck 1968]
MPP (Massively Parallel Processor) [Batcher 1980], [Potter 1985]
PACS (Tsukuba University) [Schwartz 1983]
Teamed-Architecture Signal Processor (T-ASP) Motorola [Lang, Rimmer et. al. 19881

C.4 Class 4: Associative Processor Architectures

ALAP (Associative Linear Array Processor) [Finnila 1977]
ASPRO [Goodyear Aero. 1984]
ECAM (Extended Content Addressed Memory) [Anderson & Kain 1976]
NEBULA experimental computer [Yau & Fung 19771
OMEN (Sanders Associates) [Higbie 19721
PEPE (Parallel-Element Processing Ensemble) [Crane 1972]
RAP (Ratheon Associative/Array Processor) [Couranz 1974]
RAPID (Rotating Associative Processor for Information Dissemination) [Yau & Fung 1977]
STARAN [Rudolf 72], [Batcher 1972]

C.5 Class 5: Operand-Driven Architectures

Cambridge SKIM Machine [Clarke 1980]
GMD Reduction Machine [Kluge 1980], [Treleaven 1982]
Irvine Data Flow Machine [Arvind 1975]
Manchester Data Flow Computer [Watson 1979]
M.I.T. Data-Flow Computer (static) [Dennis 1975], [Dennis 1979]
M.I.T. Tagged Token Data Flow (dynamic) [Arvind 1981]
Newcastle Data-Control Flow Computer [Treleaven et. al. 1982]
Newcastle Reduction Machine [Treleaven 1980]
North Carolina Cellular Tree Machine [Mago 1979]
Texas Instruments Distributed Data Processor [Cornish 19791
Toulouse LAU System [Plas 1976]
Utah Applicative Multiprocessing System [Keller 1979]
Utah Data-Driven Machine [Davis 1978]

C-2

C.6 Class 6: General-Purpose Multiple-PE Architectures

Advanced Flexible Processor (Control Data August 19801
Alliant FX/8 [Perron 19861
Butterfly Parallel Processor, BBN [BBN Laboratories 1985]
CEDAR, University of Illinois [Gajski, et. al. 19861, [Kuck et. al. 1987]
Cm*, Carnegie-Mellon University [Jones Pnd Schwartz]
Configurable Highly Parallel multicomputer (CHIP) [Snyder 1982], (Kapaunan 1984]
Convex C-i XI/XP [Hays 19861
Cosmic Cube [Seitz 1985]
Cray X-MP/4 [Cray April 1987]
Cyberplus [Control Data March 1986]
DADO2, Columbia University [Stolfo 1987]
ELXSI System 6400, ELXSI (Hays 19861
Encore Multimax (Encore Computer Corp. 19871
ETA-10 [ETA 1987]
FLEX/32, Flexible Corporation [Michalopoulos 1986]
HEP, Denelcor Inc [Smith BJ 1981], [Jordan 1984]
Intel Personal Supercomputer , [Wiley 19871
NON-VON, Columbia University [Shaw 1982]
Parallel Modular Signal Processor (Control Data 1987]
PASM, Purdue University (Siegel 19811
S-I. U.S. Navy [Mak 1986), [Widdoes 1979)
Texas Reconfigurable Array Computer (TRAC) [Lipovski and Malek 1987)
Ultracomputer, New York University [Gottlieb 1983]

C.7 Class 7: Neural Network Architectures

Anza-Plus Neurocomputing Coprocessor [Hecht-Nielsen Neurocomputers 1988]
AT&T CMOS VLSI Neural Network [Graf, Jackel, Hubbard 1988]
Bell Communications Rsch. chip [Brownstein 1988]
Caltech. Resistive Network [Mead 1988)
Caltech./AT&T Speech Recognition Circuit [Unnikrishnan, Hopfield, Tank 1988]
Neural Phonetic Typewriter [Kohonen 1988]

C-3

BIBLIOGRAPHY

Adams, L.M. and Crockett, T.W. (1984) Modeling A Eon Processor .Aray;
IEEE Computer, 17, 7, 38-43.

Aggarwal, S., Barbara, D., and Meth, K.Z. (1987) SPANNER: A IQQI fa th Specification,
Analysis, and E of Protocols, IEEE Transactions on Software Engineering, 13 !2, 1218-
1237.

Agha, G. A. (1986) Actors A Model of Concurrent in in Systems; MIi
Press; Cambridge, MA.

Agrawal, P. (1988) Fault Toerance Systems Without D R d ; IEEE Transactions
on Computers, 37, 3, 358-362.

Agrawal, P., Bitton, D , Guh, K., Liu, C. and Yu, C. (1988) A C= Sudy for Distributed Q
Processing; Proceedings ot the International Symposium in Parallel and Distributed Systems, 124-
130; December 1988; Austin, TX: IEEE Computer Society Press.

Agrawal, D.P., Janakiram, V.K., and Pathak, G.C. (1986) EyAFui xu4 LI.If. Performance of
Multicompute C.nflgurtions; IEEE Computer, 19, 5, 22-37.

Agrawal, R. and Jagadish, H.V. (1988) Multi-Processor Transitive C.Q.ure Algorithms;
Proceedings of the International Symposium in Parallel and Distributed Systems, 56-67; December
1988; Austin, TX: IEEE Computer Society Press.

Agrawal, R. (1985) Plrallel Log.giag AiggihIm fr Multiprocessor Dmb Mh~in;
Proceedings of the Fourth International Workshop on Database Machines, DeWitt and Boral
(eds.), Springer, Bahamas, Mar. 1985.

Ahuja, S., Carriero, N. and Gelernter, D. (1986) Lia d Friend IEEE Computer, 19, 8, 26-
34.

Ahuja, N. and Swamy, S. (1984)M Pyramid Architectures for B mage
Analysis; IEEE Transactions on Pattern Analysis and Machine Intelligence; PAMI-6, 4, 463-474.

Alexander, W. and Copeland, G. (1988) Process n Dataflow Conrol in Distributed D.gsga
In.tesive Systs; Proceedings of the 1988 SIGMOD International Conference on Managemen,
of Data, 90-98; June 1988; Chicago, IL; ACM Press.

Allen, J.R. and Kennedy, K. (1982) PFC: A Ptgram ton E T t Parallel Form;
Proceedings of IBM Conference on Parallel Computers in Scientific Computations; Rome, Italy;
1982. Also Published in Supercomputers: Design and Applications, Hwang, K. (ed); IEEE
Computer Society Press; Silver Spring, MD; 1984.

Ammann, P.E. and Knight, J.C. (1988) Da Divity An Approach ito Eault T,
IEEE Transactions on Computers, 37, 4, 388-397.

Anderson, D.P. (1988) Autm d Protocl Implementation with RTA., IEEE Transactions on
Software Engineering, 14, 3, 291-300.

BIB-1

Anfinson, C.J. and Luk, F.T. (1988) ALinear Algebraic Modelof Algorithm-Based Eault
Tolerance, IEEE Transactions on Computers, 37, 12, 1599-1604.

Appelbe, W.F. and McDowell, C.E. (1985) Anomaly Repr n- A1Tol fr D ad
Deloipng Palel Numerical Algoihm; Proceedings of the 1 st International Conference on
Supercomputing Systems, December 1985, 386-391.

Argonne National Laboratory (1988) Vectorizing Compilers: A New Iet Suit; Adventures in
Parallelism (Advanced Computing Research Facility) No.2, December 1988, 2.

Arvind and Gostelow, K.P. (1978) Te Id Report: An nronous Language d Computing
Machine; University of California at Irvine Department of Computer and Information Science
Technical Report TR- 114; September 1978

Arvind and Nikhil, R.S. (1987) Executing a F-r5 2n ti M Iagged-ken Dataflow
Architecture; Proceedings of the PARLE, Eindhoven, The Netherlands; June 1987.

Athas, W.C. and Seitz, C.L. (1988) Multicomputers: Message-PasiLe C Computers;
IEEE Computer 21, 8, 9-24.

Avizienis, A., Cardenas, A.F. and Alavian, F. (1984)On t.h l .Ef,.Lntven.si of ault Tolerant
Techniques ia l Associative Database; IEEE Data Engineering, 1

Babb, E. (1979) Implementing a Relational Database ky Means of Specialized Hardware; ACM
Transactions on Database Systems, 4, 1, 1-29.

Baillie, C.F., Gottschalk, T.D., and Kolawa, A. (1987) Comparisons f Concun,%,i Tracking on
Various Hypercubes; Teclnical Report CalTech Concurrent Computation Project; Cilifornia
Institute if Technology; Pasadena, CA 91 125.

Bandyopadhyay, S. and Sengupta, A. (1988) A Robust Protocol for Parallel Join Operation in
Distributed Databases; Proceedings of the I iternational Symposium on Databases in Parallel and
Distributed Systems, 56-67; Austin, TX; Dezember 1988; IEEE Computer Society Press.

Barerjee, P. (1988) Ih Cubical i nn Cycles: A E=ut Tolerant Parallel Computation
Network, IEEE Transactions on Compute:s, 37, 5, 632-636.

Banerjee, J., Baum, R.I. and Hsiao, D.K. (1978) Concepts rd Capabilities of a Database
Cop..te ; 3, 4.

Banerjee, J. and Hsiao, D.K. (197'.,) DBCA Database Computer for Y Databases-, IEEE
Transactions on Computers, C-28, 3.

Baru, C.K. and Frieder, 0. (1987) Implementir Relational Database Operations in a Cube-
C~. Proceedings of the IEEE T.rd International Conference on Lata
Enginreeming, February 1987.

Bassiouni, M.A. (1988) g aited istributed Optimistic Protocols for Concurrenc.y Contoi.
IEEE Transactions on Software Engineerinn. 14, 8, 1071-1080.

BIB-2

Bastani, F.B., Yen, I.L. and Chen, I.R. (1988) A C/s f InherentlyFajuh Tolerant Distributed
Proerams, IEEE Transactions on Software Engineering, 14, 10, 1432-1442.

Bastani, F.B., Hilal, W. and Iyengar, 1.1. (1987) Effien Abstract DComponents fr
Disbuted and Parallel Systems; IEEE Computer 20, 10, 33-44.

Berra, P.B. and Oliver, E. (1979) T le of Assoiative A Processors in Database Machine
Architecture; IEEE Computer, 12, 3, 53-61.

Beeri, C., Ramakrishnan, R. (1987) O thPower Ma.gi.; Proceedings of the 6th ACM
Symposium on Principles of Database Systems, 269-283.

Bic, L. and Rasset, T. (1986) Performance of I Relational Dataflow Database Machine;
Proceedings of the Hawaii International Conference on System Sciences.

Billington, J. Wheeler, G.R., and Wilbur-Ham, M.C. (1988) PROTEAN: A High-Level Petri Net
Tool for Ih Specification of Communication Protocols, IEEE Transactions on Software
Engineering, 14, 3, 301-316.

Bisiani, R. and Forin, A. (1988) Multilanguag Parallel rogrammi gf Heterogeneous
Machines, IEEE Transactions on Computers, 37, 8, 930-945

Bitton, D., DeWitt, D. and Turbyfill, C. (1983) B.ngcmaking Database Systems A Systematic
Approach; Proceedings of the 1983 Conference on Very Large Databases, 8-19; Florence, Italy.

Black, A., Hutchinson, N., Jul, E.. Levy, H., and Carter, L. (1987) Distribution and Abstract
Iy= in Emnrald, IEEE Transactions on Software Engineering, 13, 1, 65-76.

Blelloch, G.E. (1986) 0IS A Massively Conrrent Rue-asd System; Proceedings of Fifth
National Conference on Artificial Intelligence, 736-741; AAAI-86, August 1986; Philadelphia,
PA.

Bocca, J. (1986) On h aatnSrg f EDUCE; Proceedings of the 1986 ACM SIGMOD
Conference on Management of Data, 368-378; May 1986

Bocca, J. (1986) i.IC..A Maj oeQf Convenience: Pro.l.o.g a=d a Relational DBMS;
Proceedings of the Symposium on Logic Programming, 36-45; Salt Lake City, UT; September
1986.

Bochmann, G. von, (1988) Delay-Independent Des ignfLr Distributed ystems, IEEE
Transactions on Software Engineering, 14, 8, 1229-1237.

Bodorik, P. and Riordon, J.S. (1988) Huristi Algodrhms for Disibuted Que. Processing

Brandes, T. and Sommer, M. (1987) A Knowledge-Based Piallizai o Tl in aQgrammin
Enironment; Proceedings of the International Conference on Parallel Processing, 446-448;
August 1987.

Browne, J.C., Azam, M. and Sobek, S. (1989) The Computation-Oriented Display Environment
(CODE) - A Unified Approach to Parallel ErognmjaLig; pre-publication copy, University of Texas
at Austin; Austin, TX.

BIB-3

Browne, J.C., Dale, A..G., Leung, C. and Jenevin (1985) Paale kMutiS /O ,1Q Architctjure
with Sl-Manging Disk Cace for Database Man Applicions; International Workshop
on Database Machines DeWitt and Boral (eds) Springer, The Bahamas; March 1985.

Brumfield, J.A., Miller, J.L. and Chou, H.T. (1988) Performance Modeling ofD

Burton, F.W. (1988) Storage M in Virtual I= Machines: IEEE Transactions on
Computers, 37, 3, 321-328.

Cameron, E.J., Cohen, D.M., Gopinath, B., Keese, W.M. II, Ness, L., Upparalu, P., and
Volaro, J.R. (1988) JIM IC* Model Qf Parallel Computation and J~giamming Environment,
IEEE Transactions on Software Engineering, 14, 3, 317-326.

Carey, M.J. (1983) Granularity Hiartur in Concurrency Conrol; University of California at
Berkeley Memo UCB/ERL M83/1.

Carle, A., Cooper, K.D., Hood, R.T., Kennedy, K., Torczon, L. and Warren, S.K. (1987) A
Practical E nvionmen for Scientific Programming IEEE Computer, 20, 11, 75-89.

Casavant, T.L. and Kuhl, J.G. (1988) Effects f Response =d Stability 2a S in
Distributed Coipaig Systems, IEEE Transactions on Software Engineering, 14, 11, 1597-
1609.

Casavant, T.L. and Kuhl, J.G. (1988) A Taxonomy.of S in General-Purose Distributed
Comiuing systems, IEEE Transactions on Software Engineering, 14, 2, 141-154.

Casavant, T.C., Dietz, H.G., Schwederski, T., Shen. C-Y. and Siegel, H.J. (1987) Software
ln &r PASM; Proceedings of the 2nd International Conference on Supercomputing, 428-439;

May 1987.

Center for Supercomputing Research and Development (1987) Parafrase Software Pakage
Available Parafrase II; CSRD Bulletin 1/2, 3; December 1987.

Ceri, S., Gottlob, G. and Wiederhold, G. (1986) 1I acing Relational Database and r g
Efficiently; Proceedings of the 1 st International Conference on Expert Database Systems, 141-153;
April 1986.

Chan, T.F. and Saad, Y. (1986) M i or n the Hypercube Multiprocessor, IEEE
Transactions on Computers, 35, 11, 969-977.

Chandy, K.M. and Misra, J. (1988) Paralel P a Design; Addison-Wesley, Reading, MA.

Char, J.M., Cherkassky, V., Wechsler, H. and Zimmerman, G.L. (1988) Distributed an EailL-
Tolerant Computation fo Retrieval Tasks Us Distributed Associative Memories, IEEE
Transactions on Computers 37, 4, 484-490.

Chen, L. (1989) S 1i ng Initialization Equons; Technical Report in Preparation; Harvard
University; Cambridge, MA.

BIB-4

Cheng, W. Y. and Liu, J.W.S. (1988) Performance of ARQ Schemes in Token " Networks,
IEEE Transactions on Computers, 37, 7, 826-834.

Christodoulakis, S. (1984) Implications of - Au in Database Performance
Evaluation; ACM Transactions on Database Systems, 9, 12, 163-186.

Chu, W.W. and Lan, L.M.T. (1987) Tak Allocation =d P R for Distributed
SSystems, IEEE Transactions on Computers, 36, 6, 667-679.

Clark, B.P. (1988) r Systems fu Ia Pr.et.ssing: Pas. Present and Future Trends;
International Archives of Photogrammetry and Remote Sensing, Vol 27, Part B2, Commission II.

Clark, K. and Gregory, S. (1981) A Relational Languge fa Parallel Irgramming; Proceedings
of the Conference on Functional Programming Languages and Computer Architecture, 171-178;
ACM Press; October 1981.

Clark, K. and Gregory. S. (1986) PARLOG: Parallel Programmingin Lgi; ACM Transactions
on Programming Languages and Systems, 8, 1, 1-49; 1986.

Cline, C. and Siegel, H.J. (1984) A CmRison f Parallel Languatge, Approaches tQ Dat
Rpresentation and Dat Transferral; IEEE Data Engineering 1.

Coan, B.A. (1988) 1 Compiler tha Increases the Fault Tolerance of Asynchrono Protocols,
IEEE Transactions on Computers, 37, 12, 1541-1553.

Copeland, P., Lipovski, G.J. and Su, S.Y.W. (1983) The Architecture of CASSM: A Cellular
System fr Non-Numeric Pe ing; Proceedings of the First Annual Symposium on Computer
Architecture, 121-128; December 1983.

Cornsweet, T.N. (1970) Visual Perception; Academic Press, New York.

Cosmadakis, S. and Kanellakis, P. (1986) Parall Evaluation f Recursive uQ ueries; ACM
Principles of Database Systems; Cambridge, MA; March 1986.

Couch, A.L. (1988) Grahical Representations f Pr t Performance on Hrcube Message-
Passing Multiprocessors; Technical Report 88-4, Department of Computer Sciences, Tufts
University; Medford, MA.

Couch, A.L. (1987) SeeCube Users' Manual; Department of Computer Sciences, Tufts
University, Medford, MA; December 4, 1987.

Coulas, M.F., MacEwen, G.H. and Marquis, G. (1987) RNet: A Had Real-Timei
& .. gminmlrsg v. e~m, IEEE Transactions on Computers, 36, 8,917-932.

Cutler, M. (1988) Yeifying Implementation Cohrretnes Using Sate Deta Verification
Sysm(SDVS), Proceedings of the 11 th National Computer Security Conference, 156-16 1;
Gaithersburg, MD.

Darema-Rogers, et al.; (1985) An nvironmeftr Parallel E; IBM Research Report
#11225; IBM Thomas J. Watson Research Center; Yorktown Heights, NY.

BIB-5

Dart. S.A., Ellison, R.J., Feller, P.H. and Habermann, A.N. (1987) Software DJ.,m.nt
Environments; IEEE Computer 20, 11, 18-28.

Deering, M.F. (1984) Hard an d Software A e Efficient Al; Proceedings of
Third National Conference on Artificial Intelligence, 73-78; AAAI-84, August 1984; Austin, TX.

Delcambre, L. and Etheredge, J. (1988) A Self- Controhing Interpreter f" JA Relational
P cinLanguge; Proceedings of International Conference on Management of Data, 396-403;
ACM Press; 17(3); 1988.
De Millo, R.A., Lipton, R.I. and Perlis, A.J. (1979) S Processes ad Profs of Theorems

and Progazn; CACM, May 1979.

Demurjian, S.A., Fenton, G.P., Hsiao, D.K. and Vincent, J.R. (1987) A Computer-Aided
BenchJarlng, S ystem for Pa"alel and Ex dbf Database Coptr; Tv-'Hicai-Report, U.S.

Naval Postgraduate S chool, Monterey, CA; April 1987.

Dennis, J.B. (1984) Da low Supercomputers; Hwang, K. (ed) Tutorial on Supercomputers:
Design and Applications, 480-488; IEEE Computer Society Press, Silver Spring, MD.

DeWitt, D.J. and Gerber, R. (1985) Multiprocessor Has-Ba dL iniAgr ithms; Computer
Sciences Technical Report No. 583, University of Wisconsin at Madison, February 1985.
Published in Proceedings of the 11th Annual Conference on Very Large Databases, 151-164;
August 21-23, 1985.

DeWitt, D.J. and Hawthorn, P.B. (1982) A PerformancEvaluation f Database Machine
Architectures; Journal of Digital Systems, 6, 2-3, 225-250.

DeWitt, D.J. (1978) DIRECT--A Multiprocessor Organization for Supportin g Relational Database
Managemen Systems; Proceedings of the 5th Annual Symposium on Computer Architecture, 182-
189; April 1978.

Dias, D.M., Iyer, B.R. and Yu, P. (1988) Tradeoffs Between Coupling Small n Larg.g
Processors for Transaction Processing; IEEE Transactions on Conputers, 27, 3,310-320.
Dongarra, J.J. and Duff, I.S. (1987) Advantv.. C'jmputr Ac i ; Argonne National

Laboratory, Mathematics and Computer Science ision; Technical Memorandum No. 57 (Rev.
1); January 19, 1987.

Dongarra, J.J. and Sorenson, D. (1986) SCHEDULE: Iool for Developingand Analyzing
Parallel FORTRAN Porms; Argonne National Laboratory, Mathematics and Computer Science
Division; Technical Memorandum No. 85; November 1986.

Dupple, N., Peinl, P., Reuter, A., Schiele, G. and Zeller, H. (1987) Progre R or o. 2 Qf
PROSPECT; Technical University of Stuttgart, Federal Republic of Germany.

Eichholtz, S. (1987) Paralle Programming withEParMod; Proceedings of the International
Conference on Parallel Processing, 377-380; August 1987.

e fnition; Technical Report, Software Options, Inc., Cambridge, MA. 1988.

BIB-6

,, ,=,,,rm IIIII• mIII IIIII

- Tutorial; Technical Report, Software Options, Inc. Cambridge, MA. 1986.

Faudemay, P., Etiemble, D., Bechennec, J-L. and He, H. (1987) MX Database Processo RAPID;
Proceedings of the International Workshop on Data Management.

Fedorowicz, J. (1987) Database Performance E in a Indexed Fil Environmen; ACM
Transactions on Database Systems, 12, 1, 85-110.

Fei, T., Baru, C.K., Su, S.Y.W. (1984)SM3 A y naically_ Partitionable Multicomputer
System With Switchable Maia Mmory Modules; Proceedings of the IEEE International
Conference on Data Engineering, 42-49; April 1984.

Fei, T., Baru, C.K., Su, S.Y.W. (1983)SM3 A Shared Main Memory Module System for
Database Managemen ; Technical Report, Database Systems Research and Development Center,
University of Florida, Gainesville, FL; March 1983.

Forefront 3, 9, 2-4; Center for Theory and Simulation in Science and Engineering; Cornell
University; Ithaca, NY.

Forgy, C. (1982) Rt A E= Algo.ithm for he M y Pattern/Many Object Pattern Matching
Problem; Artificial Intelligence, Vol 19, 17-37; American Association for Artificial Intelligence;
Menlo Park, CA.

Forgy, C. (1981) U ser's Manual; Technical Report CMU-CS-81-135; Carnegie-Mellon
University; Pittsburgh, PA.

Forgy, C. (1980) Nt on Production Systems f Illiac-IV; Technical Report CMU-CS-80-130;
Carnegie-Mellon University; Computer Science Department; Pittsburgh, PA.

Forgy, C. and Gupta, A. (1986) Preliminary Architecture of the CMU Productions System
Machine; Hawaiian International Conference on Artificial Intelligence; January 1986.

Forgy, C., Gupta, A., Newell, A. and Wendig, R. (1984) Initia Assessment of Architectures for
Production Sym; Proceedings of Third National Conference on Artificial Intelligence, 116-120;
AAAI-84, August 1984; Austin, TX

Foulser, D.E. and Schreiber, R. (1987) The Sxp Matrix-l" A General Purpose Systolic
,.mp.tI ; IEEE Computer, 20 7, 35-43.

Fujimoto, R.M. (1983) Simon. A Simulator of Multicomputer Networks; Electronics Research
Laboratory Report No. UCB/CSD 83-136; University of California at Berkeley; Berkeley, CA.

Fushimi. S., Kitsuregawa, M. and Tanaka, H. (1986) An Overview f Jim Systems Software f A
Parallel Relational Database Machine GRACE; Proceedings of the 12th Annual Conference on
Very Large Databases; Kyoto, Japan; August 1986.

Gabriel, R.P. (1985) and E of LISP Systems; MIT Press; Cambridge, MA.

Gannon, D., Atapattu, D., Lee, M.H. and Shei, B. (1988) A. So te f r .f.lBu.ding
Supercomputer Applications: Parallel Computations and Their Impact on Mechanics, 81-92;
December 1988.

BIB-7

Garcia-Molina, H. and Kogan, B. (1988) Achieving High Avalabilit i ine,
IEEE Transactions on Software Engineering, 14, 7, 339-352.

Garcia-Molina, H. and Wiederhold, G. (1977) Application of the Contact Ne Protocol 12
Diibut Database; Stanford HPP Report 77-2-1, Computer Science Department, Stanford
University; April 1977.

Gazit, I. and Malek, M. (1988) Faul C. t in "-S Network-Based
Mulompi SSg te, IEEE Transactions on Computers, 37, 7, 788-797.

Gelernter, D. and Carreiro, N. (1986) Ih S/Net's Linda Kernel; ACM Transactions on
Computing Systems, May 1986.

Gibbons, P.B. (1987) A Stub Generator for Multilanguage RPC iH.teroge u Enironil ,
IEEE Transactions on Software Engineering, 13, 1. 77-87.

Gilmore, J. and Howard, C. (1986) E S Q for Practitioners; First Annual Australian
Artificial Intelligence Conference; November 1986.

Gottlieb, A., Grishman. R. Kruskal, C.P., MacAuliffe, K.P., Rudolph, L. and Snir, M. (1983)
The NXJU Ultracompduter: Desi _.g an MIMD Shared Memory Parallel .Cou2I; IEEE
Transactions on Computers, Vol. C-32, 2, 175-189. Re-printed in Lipovski, G.J. and Malek,
M.(1987) Parallel C T ad Compaisons, 241-266; Wiley and Sons; New York.

Gottschalk, T.D. (1987) Concurrent Multiple Target Tracking; Technical Report CalTech
Concurrent Computation Project; California Institute of Technology; Pasadena, CA 91125.

Gross, T. and Lamb, M. (1986) Compilation f[r a High-Performance Systolic Amy; Proceedings
of the ACM SIGPLAN-86 Conference on Compiler Construction, 27-38; ACM Press.

Guarna, V.A., Gannon, D. Gaur, Y. and Jablonowski, D. (1988) FAUST: An Environment for
Progamming Parallel Scientific Applications; Proceedings of the Supercomputer Conference, 3-
10; Orlando, FL.

Gupta, A. (1987) Parallelism in Production Systems; Morgan Kaufman Publishers; Los Altos,
CA.

Gupta, A. (1984) Implementing OPS5 Production System on D ; International Conference on
Parallel Processing; IEEE-1984.

Gupta, A. and Forgy, C. (1983) Measuremens on Production Systems; Technical Report
Carnegie-Mellon University; Computer Sciences Department; Pittsburgh, PA.

Gupta, A., Forgy, C., Newell, A. and Wendig, R. (1986) Parallel A =d Architectures
fQr l- d . S.s.te.s.Is.; pp 28-37, Proceedings of IEEE/ACM 13th Annual Intemationai
Symposium on Computer Architecture, 28-37; June 1986.

Gupta, A., Tambe, M., Kalp, D., Forgy, C. and Newell, A. (1988) Parallel Implementation of
QS5 on the Encore Multiprocessor: Results and Analysis; International Journal of Parallel
Programming.

BIB-8

Gupta, A., Tambe, M. (1988) Suitability of MtssagePassin Computers rfor Lm lem.nt
Systems; Proceedings of Seventh National Conference on Artificial Intelligence; Pre-

publication Copy.

Hawthorn, P.B. and DeWitt, D. J. (1982) Performance Analysis Qf Alternative Database Machine
Architectures; IEEE Transactions on Software Engineering, SE-8, 1, 61-75.

Haerder, T., Schoening, H. and Sikeler, A. (1988) Parallelism in P gQueries on Complex
Obj.cts; Proceedings of the International Symposium on Databases in Parallel and Distributed
Systems, 131-142; Austin, TX; December 1988; IEEE Computer Society Press.

Halstead, R.H. (1986) Parallel Systolic C; IEEE Computer 19, 8, 35-43.

Hansen, P.B. (1975) Tbfl Programming Langage Concurrent Pascal; IEEE Transactions on
Software Engineering, SE-1/2, 6, 313-321.

Haralick, R.M., Sternberg, S.R. and Zhuang, X. (1987) Image Analysis Using Mathematical
MM'j.ogy; IEEE Transactions on Pattern Analysis and Machine Intelligence; Volume PAMI-9,
4, 532-550.

Hart, B., Danforth, S., and Valduriez, P. (1988) Pfal.lliing a Database Programming Lag.ag.

Hayes, R. and Schlichting, R.D. (1987) Facilitating Mixed Lnguage Pogramming in Distrbuted
Systems, IEEE Transactions on Software Engineering, 13, 12, 1254-1264.

Heller, D.E. (1987) Multicomputer Simulation Prgr Simon; Shell Development Company;
Houston, TX.

Henderson, P.B. and Notkin, D. (1987) I Design .Programming Environments;
IEEE Computer, 20, 11, 12-16.

Hill. M. et al.; (1986) Desgn Deci in SPUR; IEEE Computer, 19, 10, 8-22.

Hillis, W.D. (1985) 1]& Connection Machine; MIT Press; Cambridge, MA.

Hillyer, B.K. and Shaw, D.E. (1984) Execution.of O Pr ci Systems 2n,& Massively
SMachine; Technical Report Columbia University; New York, NY.

Hillyer, B.K. and Shaw, D.E. (1986) Non-von's Performance on Cerain Database Benchmarks;
IEEE Transactions on Software Engineering, 13, 4, 577-583.

Hong, Y.C. (1984) A Parallel and Pipeline Architecture f Supp ig Database Managemnt
Systems; Proceedings of IEEE International Conference on Data Engineering, 152-159; April 24-
27, 1984.

Hong, Y.C. (1985) E £ uila 2f Relational Algebraic Primiives in a Database Machine
Architecture; IEEE Transactions on Computers, C-34, 7, 588-595.

Hopper, A. and Needham, R. M. (1988) IhM astdg g N k ,Y.m, IEEE
Transactions on Computers, 37, 10, 1214-1223.

BIB-9

Hough, A.A. and Cuny, J.E. (1987) Belvedere:otote f Pattern-Oriented far
ighly Parall Comuton; Proceedings of the International Conference on Parallel Processing,

735-738; August 1987.

Hsiao, D.K. (1987)]he Imat 2f the Intrconne. ing Network on Parallel Database Computers;
Technical Report, U.S. Naval Postgraduate School, Monterey, CA; May 1987.

Hwang, K., Ghosh, J. and Chowkwanyun, R. (1987) C Architectures &L Artificial
IPrcessing; IEEE Computer, 20, 1, 19-27.

BERMUDA-An Arctectral Perspective oa Intrfacing PROLOG IQ a Dabas Machine;
Proceedings of the 2nd International Conference on Expert Database Systems, 91-105; April 1988.

Ichikawa, T. and Hirakawa, M. (1983) A A Relational Databasej Responsible &r D=
Semantics; Technical Report CSB 83-12, Faculty of Engineering, Computer Science Group,
Hiroshima University; August 1983.

Itoh, H., Abe, M., Sakama, C. and Mitimo, Y. (1987) Parallel Contol Techniques for Dedicated
Relational Database Engines; Proceedings of the 3rd International Conference on Data
Engineering; Los Angeles, CA; February 1987.

Jahanian, F. and Mok, A.K.L. (1987) A Graph Theoretic Approach to T Analysis and its
Implementation, IEEE Transactions on Computers, 36, 8, 961-975.

Jain, H.K. (1987) A Comprehensive Model for thesinf Distributed Computer Systems,
IEEE Transactions on Software Engineering, 13, 10, 1092-1104.

Jajodia, S., Liu, J. and Ng, P.A. (1988) A Scheme of Parallel Proesngfor MIMD Machines:
IEEE Transactions on Software Engineering, SE-9, 4, 436-445.

Jajodia, S. and Rosenau, T. (1988) Implementation Basic Relational Database gr.ion Q.
Shared-Memory MIMD -Computers; Technical Report, U.S. Naval Research Laboratory,
Washington, DC.

Janssen, T. (1989) Network Expert Diagnostic System for Real-Time Control; ACM 2nd
International Conference on Industrial and Engineering Applications of Artificial Intelligence; ACM
Press; June 1989.

Jard, C., Monin, J.-F., and Groz, R. (1988) Development of Veda- A Prototyping Tool for
Distributed Algo.rilh, IEEE Transactions on Software Engineering, 14, 3, 339-352.

Kamiya, S., Matsuda, S., Iwata, K., Shibayama, S., Sakai, H. and Murakami, K. (1985) A
Hardware Pipeline Algorithm for Relational Database Operation; Proceedings of the 12th Annual
International Symposium on Computer Architecture, 250-257; June 1985.

Karp, R.M. and Ramachandran, V. (1988) A Su..e f Parallel Algorit msfor Shared-Memory
Machines; Technical Report UCB/CSD/88/408; University of California at Berkeley; Berkeley, CA
94720; March 1988.

Karp, A.H. (1987) Programming for Parallelism; IEEE Computer, 20, 5, 43-57.

BIB-10

Karr, M. (1988) Euatite ad L.ij; Technical Report, Software Options, Inc.; Cambridge,
MA.

Kasif, S., Kohli, M. and Minker, J. (1983) PRISM--A Parallel Inference System for Problem
Solving; Proceedings of the 1983 International Joint Conference on Artificial Intelligence:
Karlsruhe, FRG; February 1983.

Keefe, T.F., Tsai, W.T., and Thuraisingham, M.B. (1988) A Multilevel Security Model for
00ject-Oriented Systms, Proceedings of the 1 th National Computer Security Conference, 1-9;
Gaithersburg, MD.

Kellog, C., O'Hare, A. and Travis, L. (1986) O the Bak Dat Interface ina KM._:
Proceedings of the 12th VLDB Conference; Kyoto; August 1986.

Kerola, T. and Schwetmann, H. (1987) Monit: A Performance Monitoring "I'j for Parallel An
Psuedo-Parallel gtams; Proceedings of the ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, 163-174; 15/1; May 1987.

Kerr, D.S. (1979) Database M n with a Content Addressable Blocks and Structural
Information Processors; IEEE Computer, 12, 3, 64-79.

Kim, W., Gajski, D., Kuck, D.J. (1984) A Parallel Pipeline. Relational Ouery Processo; ACM
Transactions on Database Systems, 9, 2, 214-242.

Kinsley, K.C. and Hughes, C.E. (1988) Evaluaing Database U Schemes: AM
and Ia ApplicationI Distributive Systems, IEEE Transactions on Software Engineering, 14, 8,
1081-1089.

Kitsuregawa, M., Tanaka, H., Moto-oka, T. ((1984) Architecture and Performance Qf Relational
Algeb, Mhine GRACE; Proceedings of the 1984 International Conference on Parallel
Processing, 241-250; August 1984.

Kitsuregawa, M., Tanaka, H., Moto-oka, T. (1983) ApplicationQf aaDatabase
Machine ad J Architecture; New Generation Computing, 63-74; Springer-Verlag; 1983.

Koelbel, C. Mehotra, P. and van Rosendale, J. (1987) Semi-Automatic Domain Decomlosition in
BLAZE; Proceedings of the 1987 International Conference on Pa"ziI-l PccE.sing, 521-524;
August 1987.

Kopetz, H. and Ochsenreiter, W. (1987) Clock Synchronization in DistributeL Real-Time
Sy.stes, IEEE Transactions on Computers, 36, 8, 933-940.

Korelsky, T., Dean, B., Eichenlaub, C., Hook, J., Klapper, C., Lam, M., McCullough, D.,
Brook-McFarland, C., Pottinger, G., Rainbow, 0., Rosenthal, D., Seldin, J.P., and Weber,
D.G. (1988) L S A ComuteISecrt1y oeflig En j.mgnim, Proceedings of the 11 th
National Computer Security Conference, 20-28; Gaithersburg, MD.
Kostiuk, T and Clark, B.P. (1983) S.,.e]n Snso ADJ., Fe t

IcIl ; NASA Technical Memorandum 86083.

BIB- I1

Kriegel, H-P. and Seeger, B. (1987) Multidimensional Dni -cQantilHashing i5 VY.y
Efficientf& Non-Uniform Record Dist butiQon; Proceedings of the 3rd International Conference
on Data Engineering; Los Angeles, CA; February 1987.

Kuehn, J.T., Siegel, H.J. and Grosz, M. (1983) A Distibuted Memry Manageme Sgystem fo
PASM; Proceedings of IEEE Computer Society Workshop on Computer Architecture and Image
Database Management; October 1983.

Kung, S.Y. (1988)V L y Processors; Prentice-Hall, Englewood Cliffs, NJ.

Kung, S.Y., Lo, S.C., Jean, S.N., and Hwang, J.N. (1987) aefron Aray P-
Cc 1Q Impltont ; IEEE Computer 20, 7, 18-23.

Kung, S.Y. Arun, K.S., Gal-Ezer, R.J. and Bhaskar, D.V. (1982) W A Processor:
Lguag Architecte ad Applications; IEEE Transactions on Computers; Nov 1982, 1054-
1066.

Lakshmi, M.S. and Yu, P. (1988) Effectof &ke n Jon PerfoInce in Plll Architectures:

Lambert, P.A. (1988) Architectural Model bf & SDNS Kg Management Protocol, Proceedings
of the 1 th National Computer Security Conference, 126-128; Gaithersburg, MD.

Lang, G.R., Dharsai, M., Longstaff, F.M., Longstaff, P.S., Metford, P.A.S. and Rimmer.
M.T. (1988) An Optimum Parallel Architecture fL -High-Spee Real-Time Digital Sinal
P; IEEE Computer, 21, 2, 47-57.

Langdon, G.G. (1978) AN= on Associative Processors, Data Manaeme: ACM
Transactions on Database Systems, 3, 2, 148-158.

Leblanc, T.J. and Mellor-Crummey (1987) Debuggin Parallel Programs with Instant Replay.-
IEEE Transactions on Computers, C-36, 4, 471-482.

Lee, D.L. and Davis, W.A. (1988) An 0ak). Algo[rithm fr Ordered Retrieval from an
Associaive Memo -, IEEE Transactions on Computers, 37, 3, 368-371.

Lee, Y.H., Yu, P.S. and lyer, B.R. (1987) ProzQessive TransactiQn Recover .n Distributed
DBYDC Sysem, IEEE Transactions on Computers, 36, 8, 976-987

Lester, B.P. and Guthrie, G.R. (1987) Ayzm fQr Investigating Parallel ?NPQrithm an
Architecture Interaction; Proceedings of the International Conference on Parallel Processing, 667-
670; August 1987.

Li, K. and Naughton, J. (1988) Multiprocessor Main Memory Transaction Processing;

Li, K. and Schwetmann, H. (1985) VectorC A Vector-Processing Languag; Journal of Parallel
and Distributed Computing, 2, 1985, 132-169.

Lin, C.S., Smith, D.C.P. and Smith, J.M. (1976) ThI esig.of a Rotting Associative Memory
fa Relational Database Applications; ACM Transactions on Database Systems, 1, 1, 53-65.

BIB-12

Liu, B and Strother, N. (1988) P in VS FORTRAN a the IB 39 for Maximum
Vejor Performance; IEEE Computer, 21, 6, 65-75.

Lott, R.W. (1987) Alad Associative Proesig ; Loral Systems Group, Defense Systems
Division technical Report 87-2791-CP (Presented at AIAA Computers in Aerospace VI Conference
at Wakefield, MA; October 7- 9, 1987)

Lum, H. (1988) Spaceborne VHSIC Multiprocessorr .ygs ; NASA-Ames Technical
Memorandum; January 1988.

Luqi, Berzins, V. and Yeh, R.T. (1988) A. Prototyping L for eal- Tim Software, IEEE
Transactions on Software Engineering, 14, 10, 1409-1423.

Lynch, N.A. and Tuttle, M.R. (1988) An ,I I.. jn Input/Output Automata: Technical
Report MIT/LCSiTM-373 MIT, Cambridge, MA.

Maekawa, M. (1982) A High Performance Database Machine; Technical Report, Department of
Computer Science, University of Tokyo.

Maekawa, M. (1981) Parallel So= and Iin fa -High Database MachinC Operations:
Proceedings of the AFIPS National Computer Conference.

Maller, V.A.J. (1979) The Content Addressabl FieStore; The ICL Journal, November 1979.

Malone, T.W., Fikes, R.E. and Howard, M.T. (1983) ENTERPRISE: A Marketlike Task-
Schedul for Disib d Computin.g Enx nne.nI; MIT CISR WP No. 111 and Sloan WP No.
1537-84, Massachussetts Institute of Technology, Cambridge, MA 02139; October 1983.

Malony, A. and Reed, D. (198 8) Visualizing a Computer System Performance; University
of Illinois Center for Supercomputing Research and Development Report No. 812; May 1988.

McGregor, D.R., Thompson, R.G. and Dawson, W.N. (1976) ligh Perf ance for Database
Systems; Systems for Large Databases, 103-116; North-Holland, Amsterdam; 1976.

Mehotra, P. and van Rosendale, J. (1987) The BLAZE Lan.gage: A Parallel Laag.g. for
Scientific PgMimlng; Parallel Computing, 5 1987, 339-361.

Melamed. B. and Morris, R.J.T. (1985) VisualSTe Performance Analysis
Workstation; IEEE Computer, 17, 8, 87-94.

Menon, M.J. and Hsiao, D.K. (1981) ign =d Analysis of Reainal J Operations Q f a
Database Comput Technical Report, The Ohio State University.

Miller, S.E. (1988) Aun yQf Parall CQnmpuj.g: Amherst Systems, Inc., 30 Wilson Road,
Buffalo, NY 14221.

Miranker, D.P. (1984) Performance tim fr t DADO Machine* A .Cmorisn Qf Ir=
and et; Fifth Generation Systems, ICOT; Tokyo.

Miya, E.N. (1985) sr z Diid Procssng Bibliography; Computer Architecture
News, ACM SIGARCH, 13, 1, 27-29.

BIB-13

Morgan, E.T. and Razouk, R.R. (1987) Interactive 5= 5 Analysis of Concurrent Systems,
IEEE Transactions on Software Engineering, 13, 10, 1080-1091.

Morris, K., Ullman, J. and Van Gelder, A. (1986)D Overview.of the NAIL! System-
Technical Report Stanford University Computer Sciences Department STAN-CS-86-1108; May
1986.

Moss, J., Leban, E.B. and Chrysonthis, P.K. (1987) Fer Grined Concurrency La the Database
Cache; Proceedings of the 3rd International Conference on Data Engineering; Los Angeles, CA;
February 1987.

Moto-oka, T. and Fuchi, K. (1983) The Architectures in . Fit Generaio.Cm.te.sa,;
Procee-dngs of the IFIP 9th World Computer Congress, 589-602; September 1983.

Mundie, D.A. and Fisher, D.A. (1986) Parallel Pro sng in Ada; IEEE Computer, 19, 8, 20-25.

Murakami, K., Kakuta, T. and Onai, R. (1984) Architecture =d Hardware Systems: Parallel
Inference Machineand Knowledge Bas& Machine; Proceedings of the 1984 Fifth Generation
Computer Systems Conference, 18-36; November 1984.

Myers, W. (1986) ing . Cyle ut.of a S rcompu er; IEEE Computer, 19, 3, 89-92.

Nakayama, T., Hirakawa, N. and Ichikawa, T. (1983) Architecture and Algoritrn Parallel
of a Join Oeration; Technical Report CSG 83-19, Computer Science Group, Faculty of

Engineering, Hiroshima University; October 1983.
Nakayama, T., Hirakawa, M. and Ichikawa, T. (1984) Architecture n Algorithm for Parall

Executiq of a Join Qperation.; IEEE 1984 International Conference on Data Engineering, 160-
166; April 1984.

Naughton, J. (1988) Compiling Separable Recursions; Proceedings of the ACM SIGMOD
Conference on Management of Data, 312-319; ACM Press; 17(3); 1988.

Navarro, J.L. and Valero, M. (1987) Partitioning: An Essential L in Mapping Algorithms into
Systolic Aay Processors; IEEE Computer, 20, 7, 77-89.

Neches, P.M. (1984) Hardware Support for Advanced D Managemnt Systems: IEEE
Computer, 29-40.

Nichols, K.M. and Edmark, J.T. (1988) Modein Multicomputer Systems with PARET: IEEE
Computer, 21, 5, 39-48.

Nicol, DM. and Saltz, J.H. (1988) Dynamic Remapping of Parallel Computations with Varling
Resource Demands, IEEE Transactions on Computers, 37, 9, 1073-1087.

Oflazer, K. (1987) Partitioning in Parallel Processing f Production Systems; Technical Report
Carnegie-Mellon University; Pittsburgh, PA.

Ousterhout, J., Cherenson, A., Douglis, F., Nelson, M. and Welch, B. (1988) The Sprite
Network Qperating Systm.I: IEEE Computer, 21, 2, 23-36.

BIB- 14

Ozkarahan, E.A. (1985) Evoluion and Implementations f the RAP Database Machine; New
Generation Computing, 3, 3, 237-271.

Ozkrahan, E.A. (1983) D Eale.Fnc~tiolitie of Database Architectures; Proceedings of the
IFIP 9th World Computer Congress, 357-362; Paris, France; September 1983.

Ozkarahan, A., Schuster, S.A. and Smith, K.C. (1974) A D Processor; Technical Report
CSRG-43, Computer Systems Research Group, University of Toronto, Toronto, Ontario;
September 1974.

Ozkarahan, E.A., Schuster, S.A. and Smith, K.C. (1974) A Dataase Processor; RAP--An
Associative Proesr for Database M a gmn ; AFIPS Conference Proceedings, 370-387; 1975
National Computer Conference.

Padua, D.A., Guarna, V.A. and Lawrie, D.H. (1987) Supercomputing P.remLmming
Envinm; University of Illinois at Urbana-Champaign Center for Supercomputing Research
and Development Report No. 673.

Parker, J.L. (1971) A Lg. Pr Trk Device; Proceedings of the 1971 IFIP Congress, TA4-146
- TA4- 150; North-Holland, Amsterdam.

Parker, S., Carey, M., Golshani, F., Jarke, M., Sciore, E., and Walker, E. (1986) L.ogi
Pmgznnang nd D; Proceedings of the 1st International Workshop on Expert Database
System:, 35-48; Benjamin/Cummings; Menlo Park, CA.

Paul, G. (1984) VECTRAN nd th Proposed .Vector/Array E tQ ANSI FORTRAN for
Scientific and ,mr ti; in Hwang, K. (ed) Tutorial on Supercomputers: Design
and Applications, 143-162; IEEE Computer Society Press; Silver Spring, MD.

Perrott, R.H., Lyttle, R.W. and Dillon, P.S. (1987) Thesignn Implementation f a Pascal-
Basd nguag fr A Processr Architectures; Journal of Parallel and Distributed Computing,
4/3, June 1987, 266-287.

Pfister, G.F. and Norton, V.A. (1985) EL .= Contention nd Combining jin Multistage
Intrconnection Networks; IEEE Transactions on Computers, C-34, 10, 943-948.

Polychronopoulos, C. D. (1988) Compiler ations&Euainrg Parallelism nandTheir
i a Architecture D , IEEE Transactions on Computers, 37, 8, 991-1004.

Potter, J.L. (ed) The Massively e Processor; MIT Press; Cambridge, MA.

Pratt, T.W. (1987) The PISCES 2 Parallel P rmming Envirnment; NASA Contractor Report
178327; Institute of Computer Applications in Science and Engineering Report 87-38; July 1987.

Prohazka, C.G. (1988) Bounding the Maximum Size ofa Packet Radio Network, IEEE
Transactions on Computers, 37, 10, 1184-1190.

Prywes, N. Shi, Y., Szmanski, B. and Tseng, J.(1986) Supersystem ,ogr.mming wih Ml. ;
IEEE Computer, 19, 2, 50-60.

BIB-15

Pu, C., Hong, C. and Wha, J. (1988) Performance E of Global Reding of Entire
Database;

Pun, K.H., Belford, G.G. (1986) O G and D of Mul-P a in a
Distri dDatabase Sy.sem; Proceedings of the 2nd Annual International Conference on Data
Engineering; Los Angeles, CA; February 1986.

Qadah, G.Z. and Irani, K.B. (1985) A D Machine for Y L Relational D;
IEEE Transactions on Computers, C-34, 11, 1015-1025.

Qadah, G.Z. and Irani, K.B. (1984) Ev aion f Performance 2f thk EuJQin Qeration on Ih
M higan Relational Database Machine; Proceedings of the 1984 International Conference on
Parallel Programming, 260-265; August 1986.

Quinlan, J. (1986) A Comparative Analysis gf Computer Architecture &I Prodion System
Machines; pp 187-193, Proceedings of 19th Annual Hawaii International Conference on System
Sciences, 187-193 of Volume 1; 1986.

Ramamoorthy, C.V., Shekhar, S. and Garg, V. (1987) Software IDeel.o flL Suport &r Al
Pog;amsi ; IEEE Computer, 20, 1, 30-40.

Ramanathan, P. and Shin, K.G. (1988) Reliable B in Hypercube Multicomuters, IEEE
Transactions on Computers, 37, 12, 1654-1657.

Ramnarayan, R., Baker, C., Lu, H., Mikkilineni, J., Richardson, J., Sheth, A., Yalamanchili, S.
(1986) Y A= Parallel Da Flow; Final Technical Report, RADC-TR-88-42, Rome Air
Development Center; Griffiss Air Force Base, NY 13441-5700.

Ramnarayan, R., Zimmerman, G. and Krolikowski, S. (1986) PESA-1: A Parallel Architecture
fr Production Systems; Proceedings of 19th Annual Hawaii International Conference on
System Sciences, 201-205 of Volume 1; 1986.

Raschid, L., Sellis, T. and Lin, C. (1988) Exploiting Concurrency in a DBMS Implementation fqr
Production Sy.ma; Proceedings of the International Symposium on Databases in Parallel and
Distributed Systems, 33-45; Austin, TX; December 1988; IEEE Computer Society Press.

Raschid, L. and Su, S.Y.W. (1986) A Parallel Processing Sategy f& Evaluating Recursive
Queries; Proceedings of the 12th Annual Conference on Very Large Databases; Kyoto, Japan;
August 1986.

Rayfield, J.T. and Silverman, H.F. (1988) System and Application Softa for te Armstrong
Multiprocsr; IEEE Computer, 21, 6, 38-52.

Rea, K. and Johnston, R. de B. (1987) A Analysis ofD Communication
Behaviour, IEEE Transactions on Software Engineering, 13, 10, 1115-1126.

Reed, B., Smit, J.H., and Lott, R.W. (1986) The ASPRO Parallel Inference Enginr: A Real-Time
E Sysm; Loral Systems Group; Akron, OH.

Reeves, A.P. (1984) Parallel Pascal: An Extended Pascal for Parallel Computers; Journal of
Parallel and Distributed Computing, 1, 1984, 64-80.

BIB-16

Rego, V. and Ni, L.M. (1988) Analytic Models o ci Serice Systems U TIr Appi

Tok-Pssing Local Networks, IEEE Transactions on Computers, 37, 10 1224-1234.

Rice, J.R. (1983) Numerical Methods. Software a Analysis; McGraw-Hill; New York, NY.

Rohmer, J., Gonzalez-Rubio, R. and Bradier, A. (1986) Delta Driven Computer DA Parallel
Machine &I Symbolic Procing; Compagnie Bull, SA; Louveciennes, France; July 1986.

Rowland, J., Johnson, R. and Thompson, W.C. HI (1982) A Database Machine Architecture for
erforj.a2 Aingtion.; Tecnical Report No. UCRL-87419, Lawrence Livermore National

Laboratory, Livermore, CA.

Sabot, G. (1988) Tlh l n Model; MIT Press, Cambridge, MA.

Sanders, B.A. (1988) An Asynchronous. Distributed Flmw Control A r &o Rat Allocation
jL Compute[Networks, IEEE Transactions on Computers, 37, 7, 779-787.

Sarin, S.K. and Lynch, N.A. (1987) Diading Obsolete Informtion in a Replicated Database
S , IEEE Transactions on Software Engineering, 13, 1, 39-47.

Satyanarayanan, M. (1988) Imtgating Security in a L&= Dii System, Proceedings of the
11 th National Computer Security Conference, 91-108; Gaithersburg, MD.

Schwan, K., Gopinath, P. and Bo, W. (1987) CHAOS- Kernel S for Objects i the RaL
ime Domain, IEEE Transactions on Computers, 36, 8, 904-916.

Schwartz, J.T. (1980) Ultracomputers; ACM Transactions on Programming Languages and
Systems, 2, 4, 484-521.

Scott, M.L. (1987) La Support for Loosely Cou d Distribute Systems, IEEE
Transactions on Software Engineering, 13, 1, 88-103.

Seals, J.D. (1988) Next Generation EW Processing Architectures; Defense Computing, 1, 3, 64-
70.

Segall, Z. and Rudolph, L. (1985) FM- A P and Instrumentation ,n.ir~om.'l for
Paallel Processing; IEEE Software, Nov 1985, 22-37.

Seigel, H.J. (1981) PASM: A artitionable SIMDMIM System for Image Preing ad
Pat Reognition; IEEE Transactions on Computers, 30, 12, 934-946.

Sellis, T., Lin, C. and Raschid, L. (1988) Imp~letn g LA= P S ia &DBMS
Environ.n.tLs o n t and Algorithms; Proceedings of the International Conference on
Management of Data, 404-412; ACM Press; 1988.

Sellis, T., and Roussopoulos, N. (1988) D Compilatio 2f LZ=g Ruk Ba ; Proceedings of
the 2nd International Conference on Expert Database Systems, 277-288; April 1988.

Sevinic, S., and Zeigler, B.P. (1988) Entity u Based D Mtodl.g A LAN
Protocol EampIC, IEEE Transactions on Software Engineering, 14, 3, 375-383.

BIB-17

Shapiro, E. (1986) C Prolog: A grogss Report; IEEE Computer, 19, 8, 44-58.

Shasha, D. (1986) QUM Pessia in a Symic Parallel Environmenit Technical Report #197,
Ultracomputer Note #95, Courant Institute, New York University, New York, NY; January
1986.

Shasha, D. and Spirakis, P. (1985) 1in irzsing in a Sym ric Parllel Environmnm ; Techical
Report, Courant Institute, New York University, New York, NY; February 1985.

Shaw, D.E. (1987) On Ih ange of Applicability f an Arificial Intlligece Machine; Artificial
Intelligence, Vol 32, No. 2, 151-172.

Shaw, D.E. (1985)]3= NON-VON S Technical Report, Department of Computer
Science, Columbia University; New York, NY.

Shaw, D.E. (1985)]3M NON-VON's Applicability IQ I=e Al Task Aas; Proceedings of the 9th
International Joint Conference on Artificial Intelligence, 61-72; LJCAI-85.

Shaw, D.E. (1985) Organizand Operation ofa Massively Parallel Machine; in Rabbat, B.
(ed) Computers and Technology; Elsevier-North Holland; 1985.

Shaw, D.E. (1984) SIMD and MIMU Variants 2f teNON-VON Super.ompute Proceedings of
COMPCON Spring '84; San Francisco, CA; February 1984.

Shaw, D.E. (1980) A Relational Database Machine Architecture; Proceedings of the 1980
Workshop on Computer Architecture for Non-Numeric Processing; March 1980.

Shaw, D.E. (1980) Knowledge-Based Retrieval Qna Relational Datbase Machine; Ph.D.
Dissertation, Report STAN-CS-80-823, Department of Computer Science, Stanford University,
Palo Alto, CA; August 1980.

Shaw, D.E. (1979) A i ecical Associative Architectur r Parallel Evaluation Qf Relational
Algebrai Database Primitives; Report STAN-SC-79-778, Department of Computer Science,
Stanford University, Palo Alto, CA; October 1979.

Shen, V. (1988) VERDI Ur.s Guid; MCC Technical Report No. STP-153-88-(Q); {Document
is proprietary to MCC and Consortium Participant)

Shin, K.G. and Lin, T. -H. (1988) e n d Measurement ofEnorPin a
MultimonIl Computing Sysm,. IEEE Transactions on Computers, 37, 9, 1053-1066.

Shin, S. et al.; (1985) Parallel Computation 2 the L Coupled Aay Qf Processors: A
Gui 12 th Pre-Processor; IBM Report No. KGN-42; Kingston, NY.

Shoshani, A. and Bernstein, J.J. (1969) Synchronization in a Parallel-Accessed Da a=.:
Communications of the ACM, 12, 11, 604-608.

Shultz, R.K. and Zingg, R.J. (1984) Response Tim Analysig of Multi-processor Computers for
Database Sup; ACM Transactions on Database Systems, 9, 1, 100-132.

BIB-18

Sigel, H.J., Schwederski, T., Kuehn, J.T. and Davis, N.J. (1987) An Ooifthe PASM
Paralll Pr sng System in Gajski et al. (eds) Tutorial: Computer Architecture, 387-407; IEEE
Computer Society Press; Silver Spring, MD.

Slotnick, D.L. (1970) Per F. ,,J Devices; Advances in Computers, 291-296; Academic
Press; New York; 1970.

Smith, J. (1986) E D S A. Perspective; Proceedings from the First
International Workshop on Expert Database Systems, 1-15; Benjamin/Cummings; Menlo Park,
CA.

Smith, K. and Appelbe, W.F. (1988) PAL- An Interactive F e TI; School
of Information and Computer Science, Georgia Institute of Technology; Atlanta, GA 30332.

Smith, R.G. (1980) he Contract Nt Protocol: HighL Communication and Cntrol in A
Distibtd ProbleSm l IEEE Transactions on Computers, C-29, 12, 1104-1113.

Smith, R.G., Mitchell, T.M., Chestek, R.A. and Buchanan, B. (1977) The Contract Net." A
Formalism for Le Controlf Disri d Problem olvin.g; Proceedings of the 1977 International
Joint Conference on Artificial Intelligence, 338-343; February 1977.

Snyder, L. (1984) Parallel ro.gramniiag and the Poker Programing Eiro.nien ; IEEE
Computer, 17, 7, 27-36.

Staskauskas, M.G. (1988) = EfficienL and Eault Tolerant Message Rouing in Outerplana
Networks, IEEE Transactions on Computers, 37, 12, 1529-1540.

Stanfill, C. and Waltz,D. (1988) Arificial Intllige on the ..onnectioa Machine System: A

Snapshot; Technical Report TR-G88-1, The Thinking Machine Corporation; Cambridge, MA.

Stolfo, S. (1987) Intial Performance. ft AP Prtot_; IEEE Computer, 17, 7, 27-36.

Stolfo, S.J. (1984) Five Parallel Algoriths f&r Production Sysm Eecuion; Proceedings of the
Third National Conference on Artificial Intelligence, 300-307; AAAI-84, August 1984; Austin,
TX.

Stolfo, S.J. and Miranker, D.P. (1986) Jh DADO PE ia System Machine; Journal of
Parallel and Distributed Computing, Vol 3, No. 2, 269-296.

Stone, H. (1987) Parallel Qi A= Databases: A ,Pef~orma Study; IEEE Computer,
20, 10, 11-21.

Stoves, D.J. (1981) CAFS800: 5 Principles ad Practices; Proceedings of the 5th International
On-Line Meeting, Learned Information 1981.

Su, S.Y.W. (1979) CllilaL gi D _; Cacm and Cnllc1in; IEEE Computer, 12, 3,
11-25.

Su, S.Y.W. and Baru, C.K. (1984) Dynamigflx Panitionakk MultiComputs with Siha
Me==ry; Journal of parallel and Distributed Computing, 1, 152-184.

BIB-19

Sullivan, G.F. (1988) An Q(T ± , Ealaul Identification Ar1rihm flie Y=xm5,
IEEE Transactions on Computers, 37, 4, 388-397.

Swinehart, D.C., Zellweger, P.T. and Hagmann, R.B. (1985) The Strcre of Cedar;
Proceedings of the ACM SIGPLAN Symposium on Language Issues in Programming
Environments, 230-244.

Tambe, M., Kalp, D., Gupta, A., Forgy, C., Milnes, B. and Newell, A. (1988) S iE:
InxeWflg Match Paral in a Lening P cd ion Sysm; Proceedings of the ACM
SIGPLAN Symposium on Parallel Programming; PPEALS-88.

Tanaka, Y., Nozaka, Y. and Masuyama, A. (1980) Pipeline Searchingd Soing Mod as
.omRQnenn1 of a Daa E[]A Databas .Comput; Proceedings of the IFIP Congress; October 6-9,
1980.

Terradata (1985) Parallel Databas Comp t ast = Conventional DBMS; Computer Design,
24, 11,6.

Terry, D.B. (1987) C Hi= isit Systems, IEEE Transactions on Software
Engineering, 13, 1, 48-54.

Uyar, M.U. and Reeves, A.P. (1988) Dynamic Ful Reconfiguration in a Mesh-Connected
MMD I ,dEnvironmnt, IEEE Transactions on Computers, 37, 10, 1191-1205.

Valduriez, P. and Khoshafian, S. (1988) Transitive C f Transitively Closed Realtions;
Proceedings of the 2nd International Conference on Expert Database Systems, 177-185; April
1988.

Valduriez, P. and Gardarin, G. (1984) Join ad S A fail Multiprocessor
Database Machine; ACM Transactions on Database Systems, 9, 1, 133-161.

Wah, B. (1987) New Computers for Artificial Intelligence roessing; IEEE Computer, 20, 1, 10-
15.

Waltz, D.L. (1987) Applications of the Connection Machine; IEEE Computer, 20, 1, 85-97.

Wang, X. and Luk, W.S. (1988) Parallel Join Alithm Qn a Network Qf Workstations;

Wang, Y. (1988) A Diuted Specification Model an ts !royping, IEEE Transactions on
Software Engineering, 14, 8, 1090-1097.

Wayman, R. (1986) S Engineering for Transputer-Based Systems; Collection on Software
Engineering for VLSI Parallel Processing, Digest No. 102; October 1986.

Webb, J. (1989) Personal Communication; Carnegie-Mellon University; Pittsburgh, PA.

Wei, Y.H. and Gaudiot, J.L. (1988) Demand-Driven Interpreation of FP Programs o-n a Daa-
Flow M, IEEE Transactions on Computers, 37, 8, 946-966.

BIB-20

Welch, H.O. (1984) Software Development f.o A Machines; in Vick, C.R. and Ramamoorthy,
C.V. (eds); Handbook of Software Engineering, 623-639; Van Nostrand Reinhold Company;
New York.

Whang, K-Y., Wiederhold, G. and Sagalowicz, D. (1984) S il An Approach LQ Physical
Database Ds; IEEE Transactions on Computers, 33, 3, 209-222.

Wolfson, 0. (1988) S th Load of Logic-Program E-va ...ion; Proceedings of the
International Symposium on Databases in Parallel and Distributed Systems, 46-55; IEEE
Computer Society Press; Washington, DC; December 1988.

Wolfson, 0. and Silberschatz, A. (1988) ii Pssng of Lgj Pogram; Proceedings
of the International Conference on Management of Data, 329-336; ACM Press; 17(3); 1988.

Yamaguchi, K. and Kunii, T.L. (1982) PICCOLO, ggif for a incture Database Compute nd it
Implementation; IEEE Transactions on Computers, C-31, 10, 983-996.

Yang, C. L. and Masson, G.M. (1988) Hybrid Faul Diagnosability with Unreliable
Communications Links,IEEE Transactions on Computers, 37, 3, 175-181.

Yu, P.S., Balsamo, S., and Lee, Y.-H. (1988) Dynamic Transaction .outi.g in
Database Systems, IEEE Transactions on Software Engineering, 14,9, 1307-1318.

Zhang, Y.X. (1988) An Interactive Protocol Synthesis Algoritlm IiAg Global Sat Transition
rah.R, IEEE Transactions on Software Engineering, 14, 3, 394-404.

Zhao, W., Ramamrithan, K., and Stankovic, J.A. Scheduling I-Lin U HUd Real-Time SysteM,
IEEE Transactions on Software Engineering, 13, 5, 564-577.

Zipf, G.K. (1949) Human Bviu and the Principle f Leas= Effo; Addison-Wesley; Reading,
MA; 1949.

BIB-21

MISSION

of

Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (CS) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C31 systems. The areas of

technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state

sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.

